Published online by Cambridge University Press: 04 December 2007
We demonstrate that a pair of additive quintic equations in at least 34 variables has a nontrivial integral solution, subject only to an 11-adic solubility hypothesis. This is achieved by an application of the Hardy–Littlewood method, for which we require a sharp estimate for a 33.998th moment of quintic exponential sums. We are able to employ p-adic iteration in a form that allows the estimation of such a mean value over a complete unit square, thereby providing an approach that is technically simpler than those of previous workers and flexible enough to be applied to related problems.