Published online by Cambridge University Press: 01 November 2007
Let E be a CM number field and let S be a finite set of primes of E containing the primes dividing a given prime number l and another prime u split above the maximal totally real subfield of E. If ES denotes a maximal algebraic extension of E which is unramified outside S, we show that the natural maps are injective. We discuss generalizations of this result.
The author is supported by the C.N.R.S.