Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T00:56:40.705Z Has data issue: false hasContentIssue false

On a generalized conjecture of Hopf with symmetry

Published online by Cambridge University Press:  01 February 2017

Manuel Amann
Affiliation:
Fakultät für Mathematik, Institut für Algebra und Geometrie, Karlsruher Institut für Technologie, Englerstraße 2, Karlsruhe, 76131 Karlsruhe, Germany email [email protected]
Lee Kennard
Affiliation:
Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, USA email [email protected]

Abstract

A famous conjecture of Hopf states that $\mathbb{S}^{2}\times \mathbb{S}^{2}$ does not admit a Riemannian metric with positive sectional curvature. In this article, we prove that no manifold product $N\times N$ can carry a metric of positive sectional curvature admitting a certain degree of torus symmetry.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allday, C. and Puppe, V., Cohomological methods in transformation groups (Cambridge University Press, Cambridge, 1993).Google Scholar
Amann, M. and Kennard, L., Topological properties of positively curved manifolds with symmetry , Geom. Funct. Anal. 24 (2014), 13771405.Google Scholar
Asoh, T., Compact transformation groups on ℤ2 -cohomology spheres with orbit of codimension 1 , Hiroshima Math. J. 11 (1981), 571616.Google Scholar
Berger, M., Trois remarques sur les variétés riemanniennes à courbure positive , C. R. Math. Acad. Sci. Paris 263 (1966), A76A78.Google Scholar
Bredon, G. E., Introduction to compact transformation groups (Academic Press, New York, 1972).Google Scholar
Conner, P. E., On the action of the circle group , Michigan Math. J. 4 (1957), 241247.CrossRefGoogle Scholar
Dearricott, O., A 7-manifold with positive curvature , Duke Math. J. 158 (2011), 307346.Google Scholar
Dessai, A., Characteristic numbers of positively curved spin-manifolds with symmetry , Proc. Amer. Math. Soc. 133 (2005), 36573661.CrossRefGoogle Scholar
Dessai, A., Obstructions to positive curvature and symmetry , Adv. Math. 210 (2007), 560577.Google Scholar
Eschenburg, J. H., Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe Math. Inst. Univ. Münster, 2, vol. 32 (Universität Münster Mathematisches Institut, Münster, 1984).Google Scholar
Félix, Y., Halperin, S. and Thomas, J.-C., Rational homotopy theory (Springer, New York, 2001).Google Scholar
Grove, K., Geometry of, and via, symmetries , in Conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000), University Lecture Series, vol. 27 (American Mathematical Society, Providence, RI, 2002), 3153.Google Scholar
Grove, K., Developments around positive sectional curvature , in Surveys in differential geometry, Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry (International Press, Somerville, MA, 2009), 117133.Google Scholar
Grove, K. and Halperin, S., Dupin hypersurfaces, group actions, and the double mapping cylinder , J. Differential Geom. 26 (1987), 429459.Google Scholar
Grove, K. and Searle, C., Positively curved manifolds with maximal symmetry rank , J. Pure Appl. Algebra 91 (1994), 137142.Google Scholar
Grove, K., Verdiani, L. and Ziller, W., An exotic T 1S4 with positive curvature , Geom. Funct. Anal. 21 (2011), 499524.CrossRefGoogle Scholar
Grove, K. and Wilking, B., A knot characterization and 1-connected nonnegatively curved4-manifolds with circle symmetry , Geom. Topol. 18 (2014), 30913110.CrossRefGoogle Scholar
Hirzebruch, F., Berger, T. and Jung, R., Manifolds and Modular Forms, Aspects of Mathematics, vol. 20 (Vieweg, Braunschweig, 1992).Google Scholar
Hsiang, W. Y. and Kleiner, B., On the topology of positively curved 4-manifolds with symmetry , J. Differential Geom. 30 (1989), 615621.Google Scholar
Kapovitch, V. and Ziller, W., Biquotients with singly generated rational cohomology , Geom. Dedicata 104 (2004), 149160.Google Scholar
Kennard, L., Positively curved Riemannian metrics with logarithmic symmetry rank bounds , Comment. Math. Helv. 89 (2014), 937962.CrossRefGoogle Scholar
Powell, G. M. L., Elliptic spaces with the rational homotopy type of spheres , Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 251263.Google Scholar
Totaro, B., Cheeger manifolds and the classification of biquotients , J. Differential Geom. 61 (2002), 397451.Google Scholar
Wallach, N. R., Compact homogeneous Riemannian manifolds with strictly positive curvature , Ann. of Math. (2) 96 (1972), 277295.Google Scholar
Weisskopf, N., Positive curvature and the elliptic genus, New York J. Math., to appear, Preprint (2013), arXiv:1305.5175v1.Google Scholar
Wilking, B., Torus actions on manifolds of positive sectional curvature , Acta Math. 191 (2003), 259297.Google Scholar
Wilking, B., Nonnegatively and positively curved manifolds , in Surveys in Differential Geometry, Vol. XI. Metric and Comparison Geometry (International Press, Somerville, MA, 2007), 2562.Google Scholar
Ziller, W., Examples of Riemannian manifolds with non-negative sectional curvature , in Surveys in Differential Geometry, Vol. XI. Metric and Comparison Geometry (International Press, Somerville, MA, 2007), 63102.Google Scholar
Ziller, W., Riemannian manifolds with positive sectional curvature , in Geometry of Manifolds with Non-negative Sectional Curvature, Lecture Notes in Mathematics, vol. 2110 (Springer, Cham).Google Scholar