Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T04:54:35.040Z Has data issue: false hasContentIssue false

Non-trivial matrix actions preserve normality for continued fractions

Published online by Cambridge University Press:  06 February 2017

Joseph Vandehey*
Affiliation:
Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus OH, 43210-1174, USA email [email protected]

Abstract

A seminal result due to Wall states that if $x$ is normal to a given base $b$, then so is $rx+s$ for any rational numbers $r,s$ with $r\neq 0$. We show that a stronger result is true for normality with respect to the continued fraction expansion. In particular, suppose $a,b,c,d\in \mathbb{Z}$ with $ad-bc\neq 0$. Then if $x$ is continued fraction normal, so is $(ax+b)/(cx+d)$.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aistleitner, C., On modifying normal numbers , Unif. Distrib. Theory 6 (2011), 4958; MR 2904038.Google Scholar
Airey, D., Mance, B. and Vandehey, J., Normality preserving operations for Cantor series expansions and associated fractals part II , New York J. Math. 21 (2015), 13111326.Google Scholar
Becher, V., Carton, O. and Heiber, P. A., Normality and automata , J. Comput. System Sci. 81 (2015), 15921613; MR 3389924.Google Scholar
Borwein, J., van der Poorten, A., Shallit, J. and Zudilin, W., Neverending fractions: an introduction to continued fractions, Australian Mathematical Society Lecture Series, vol. 23 (Cambridge University Press, Cambridge, 2014).Google Scholar
Brooks, J. K., On the Vitali-Hahn-Saks and Nikodým theorems , Proc. Natl. Acad. Sci. USA 64 (1969), 468471.Google Scholar
Brualdi, R. A. and Ryser, H. J., Combinatorial matrix theory, Encyclopedia of Mathematics and its Applications, vol. 39 (Cambridge University Press, Cambridge, 1991); MR 1130611 (93a:05087).Google Scholar
Bugeaud, Y., Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, vol. 193 (Cambridge University Press, Cambridge, 2012); MR 2953186.Google Scholar
Chang, K. T., A note on normal numbers , Nanta Math. 9 (1976), 7072; MR 0444599 (56 #2949).Google Scholar
Doty, D., Lutz, J. H. and Nandakumar, S., Finite-state dimension and real arithmetic , Inform. and Comput. 205 (2007), 16401651; MR 2368644 (2008m:68073).Google Scholar
Dunford, N. and Schwartz, J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics, vol. 7 (Interscience, London, 1958); with the assistance of W. G. Bade and R. G. Bartle; MR 0117523 (22 #8302).Google Scholar
Gosper, R. W., Continued fraction arithmetic , in HAKMEM Item 101B, MIT Artificial Intelligence Memo 239 (MIT, Cambridge, MA, 1972).Google Scholar
Iosifescu, M. and Grigorescu, Ş., Dependence with complete connections and its applications, Cambridge Tracts in Mathematics, vol. 96 (Cambridge University Press, Cambridge, 1990); MR 1070097 (91j:60098).Google Scholar
Jager, H. and Liardet, P., Distributions arithmétiques des dénominateurs de convergents de fractions continues , Nederl. Akad. Wetensch. Indag. Math. 50 (1988), 181197; MR 952514.Google Scholar
Kraaikamp, C. and Nakada, H., On normal numbers for continued fractions , Ergodic Theory Dynam. Systems 20 (2000), 14051421.Google Scholar
Kraaikamp, C., Schmidt, T. A. and Steiner, W., Natural extensions and entropy of 𝛼-continued fractions , Nonlinearity 25 (2012), 22072243; MR 2946184.Google Scholar
Liardet, P. and Stambul, P., Algebraic computations with continued fractions , J. Number Theory 73 (1998), 92121; MR 1654886 (2000c:11014).Google Scholar
Mauduit, C., Problem session dedicated to Gérard Rauzy, Dynamical systems (Luminy–Marseille, 1998), 119 (World Scientific, River Edge, NJ, 2000), MR 1796141 (2001i:11001).Google Scholar
Meyer, C., Matrix analysis and applied linear algebra (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000); with 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual; MR 1777382.Google Scholar
Moshchevitin, N. G. and Shkredov, I. D., On the Pyatetskiĭ-Shapiro criterion for normality , Mat. Zametki 73 (2003), 577589; MR 1991904 (2005e:37013).Google Scholar
Raney, G. N., On continued fractions and finite automata , Math. Ann. 206 (1973), 265283; MR 0340166 (49 #4922).Google Scholar
Saloff-Coste, L. and Zúñiga, J., Merging and stability for time inhomogeneous finite Markov chains, Surveys in stochastic processes , EMS Ser. Congr. Rep. (2011), 127151; MR 2883857 (2012m:60166).Google Scholar
Schweiger, F., Ergodic theory of fibred systems and metric number theory , Oxford Science Publications (The Clarendon Press, Oxford University Press, New York, 1995); MR 1419320 (97h:11083).Google Scholar
Vandehey, J., On the joint normality of certain digit expansions, Preprint (2014), arXiv:1408.0435.Google Scholar
Wall, D. D., Normal numbers, ProQuest LLC, Ann Arbor, MI, 1950, PhD thesis, University of California, Berkeley, CA; MR 2937990.Google Scholar