Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T00:39:47.471Z Has data issue: false hasContentIssue false

The non-existence of stable Schottky forms

Published online by Cambridge University Press:  10 March 2014

G. Codogni
Affiliation:
DPMMS, University of Cambridge, Cambridge CB3 0WB, UK email [email protected]
N. I. Shepherd-Barron
Affiliation:
Department of Mathematics, King’s College London, Strand, London WC2R 2LS, UK email [email protected]

Abstract

We show that there is no stable Siegel modular form that vanishes on every moduli space of curves.

Type
Research Article
Copyright
© The Author(s) 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeev, V. A. and Brunyate, A., Extending the Torelli map to toroidal compactifications of Siegel space, Invent. Math. 188 (2012), 175196.CrossRefGoogle Scholar
Codogni, G., Non-perturbative Schottky problem and stable equations for the hyperelliptic locus, Preprint (2013), arXiv:1306.1183 [math.AG].Google Scholar
Fay, J., Theta functions on Riemann surfaces, Lecture Notes in Mathematics, vol. 352 (Springer, 1973).Google Scholar
Freitag, E., Stabile Modulformen, Math. Ann. 230 (1977), 197211.Google Scholar
Freitag, E., Siegelsche Modulfunktionen (Springer, 1983).Google Scholar
Grushevsky, S. and Salvati Manni, R., The superstring cosmological constant and the Schottky form in genus 5, Amer. J. Math. 133 (2011), 10071037.Google Scholar
Hoyt, W., On products and algebraic families of Jacobian varieties, Ann. of Math. (2) 77 (1963), 414423.Google Scholar
Igusa, J.-I., Schottky’s invariant and quadratic forms, in E. B. Christoffel: the influence of his work on mathematics and the physical sciences (Birkhäuser, Basel, 1981); 352–362.Google Scholar
Igusa, J.-I., On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Section IA Math. 28 (1981), 531545.Google Scholar
Mumford, D., Further comments on boundary points, inProc. Woods Hole conference, Woods Hole, MA, 1964.Google Scholar
Schottky, F., Zur Theorie der Abelschen Functionen von vier Variabeln, J. Reine Angew. Math. 102 (1888), 304352.Google Scholar
Shepherd-Barron, N. I., Siegel modular forms and the gonality of curves, Preprint (2013),arXiv:1306.6253 [math.AG].Google Scholar
Springer, G., Introduction to Riemann surfaces (Addison-Wesley, 1957).Google Scholar
Yamada, A., Precise variational formulas for abelian differentials, Kodai Math. J. 3 (1980), 114143.Google Scholar