Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T10:58:08.898Z Has data issue: false hasContentIssue false

Non-archimedean canonical measures on abelian varieties

Published online by Cambridge University Press:  21 April 2010

Walter Gubler*
Affiliation:
Mathematisches Institut, Universität Tübingen, D-72076 Tübingen, Germany (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a closed d-dimensional subvariety X of an abelian variety A and a canonically metrized line bundle L on A, Chambert-Loir has introduced measures c1(LX)d on the Berkovich analytic space associated to A with respect to the discrete valuation of the ground field. In this paper, we give an explicit description of these canonical measures in terms of convex geometry. We use a generalization of the tropicalization related to the Raynaud extension of A and Mumford’s construction. The results have applications to the equidistribution of small points.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Berkovich, V. G., Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, vol. 33 (American Mathematical Society, Providence, RI, 1990).Google Scholar
[2]Berkovich, V. G., Étale cohomology for non-archimedean analytic spaces, Publ. Math. Inst. Hautes Études Sci. 78 (1993), 5161.CrossRefGoogle Scholar
[3]Berkovich, V. G., Vanishing cycles for formal schemes, Invent. Math. 115 (1994), 539571.Google Scholar
[4]Berkovich, V. G., Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), 184.CrossRefGoogle Scholar
[5]Berkovich, V. G., Smooth p-adic analytic spaces are locally contractible. II, in Geometric aspects of Dwork theory, vol. I, eds Adolphson, A.et al. (de Gruyter, Berlin, 2004), 293370.Google Scholar
[6]Berkovich, V. G., Integration of one forms on p-adic analytic spaces, Annals of Mathematics Studies, vol. 162 (Princeton University Press, Princeton, NJ, 2007).CrossRefGoogle Scholar
[7]Bombieri, E. and Gubler, W., Heights in Diophantine geometry (Cambridge University Press, Cambridge, 2006).Google Scholar
[8]Bosch, S., Zur Kohomologietheorie rigid analytischer Räume, Manuscr. Math. 20 (1977), 127.CrossRefGoogle Scholar
[9]Bosch, S., Güntzer, U. and Remmert, R., Non-archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, vol. 261 (Springer, Berlin, 1984).Google Scholar
[10]Bosch, S. and Lütkebohmert, W., Néron models from the rigid analytic viewpoint, J. Reine Angew. Math. 364 (1986), 6984.Google Scholar
[11]Bosch, S. and Lütkebohmert, W., Degenerating abelian varieties, Topology 30 (1991), 653698.CrossRefGoogle Scholar
[12]Bosch, S. and Lütkebohmert, W., Formal and rigid geometry. I: rigid spaces, Math. Ann. 295 (1993), 291317.CrossRefGoogle Scholar
[13]Bosch, S. and Lütkebohmert, W., Formal and rigid geometry. II: flattening techniques, Math. Ann. 296 (1993), 403429.Google Scholar
[14]Bourbaki, N., Éléments de Mathématique. Fasc. XXX. Algèbre commutative. Chap. 5: Entiers. Chap. 6: Valuations, Actualités scientifiques et industrielles, vol. 1308 (Hermann, Paris, 1964).Google Scholar
[15]Chambert-Loir, A., Mesure et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215235.Google Scholar
[16]de Jong, A. J., Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.CrossRefGoogle Scholar
[17]Faltings, G. and Chai, C.-L., Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Bd. 22 (Springer, Berlin, 1989).Google Scholar
[18]Fresnel, J. and van der Put, M., Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218 (Birkhäuser, Boston, MA, 2004).CrossRefGoogle Scholar
[19]Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Bd. 2 (Springer, Berlin, 1984).CrossRefGoogle Scholar
[20]Fulton, W., Introduction to toric varieties, in The 1989 W. H. Roever lectures in geometry, Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, NJ, 1993).Google Scholar
[21]Grothendieck, A. and Dieudonné, J., Éléments de géometrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (quatrieme partie), Publ. Math. Inst. Hautes Études Sci. (1967), 1361.Google Scholar
[22]Gubler, W., Heights of subvarieties over M-fields, in Arithmetic geometry. Proceedings of a symposium, Cortona, 1994, Symposia Mathematica, vol. 37 ed. Catanese, F. (Cambridge University Press, Cambridge, 1997), 190227.Google Scholar
[23]Gubler, W., Local heights of subvarieties over non-archimedean fields, J. Reine Angew. Math. 498 (1998), 61113.CrossRefGoogle Scholar
[24]Gubler, W., Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (Ser. V) 2 (2003), 711760.Google Scholar
[25]Gubler, W., Tropical varieties for non-archimedean analytic spaces, Invent. Math. 169 (2007), 321376.Google Scholar
[26]Gubler, W., The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math. 169 (2007), 377400.Google Scholar
[27]Gubler, W., Equidistribution over function fields, Manuscr. Math. 127 (2008), 485510.CrossRefGoogle Scholar
[28]Gubler, W., Non-archimedean canonical measures on abelian varieties. Preprint (2008), arXiv:math.NT:0801.4503v1.Google Scholar
[29]Hartl, U. and Lütkebohmert, W., On rigid-analytic Picard varieties, J. Reine Angew. Math. 528 (2000), 101148.Google Scholar
[30]Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings. I, Lecture Notes in Mathematics, vol. 339 (Springer, Berlin, 1973).CrossRefGoogle Scholar
[31]Künnemann, K., Projective regular models for abelian varieties, semistable reduction, and the height pairing, Duke Math. J. 95 (1998), 161212.Google Scholar
[32]Künnemann, K., Height pairings for algebraic cycles on abelian varieties, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), 503523.Google Scholar
[33]McMullen, P., Duality, sections and projections of certain Euclidean tilings, Geom. Dedicata 49 (1994), 183202.CrossRefGoogle Scholar
[34]Mumford, D., An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239272.Google Scholar
[35]Szpiro, L., Ullmo, E. and Zhang, S., Equirépartition des petits points, Invent. Math. 127 (1997), 337347.CrossRefGoogle Scholar
[36]Ullmo, E., Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), 167179.CrossRefGoogle Scholar
[37]Yuan, X., Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), 603649.CrossRefGoogle Scholar
[38]Zhang, S., Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), 159165.CrossRefGoogle Scholar