Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T02:03:02.697Z Has data issue: false hasContentIssue false

Log-canonical pairs and Gorenstein stable surfaces with $K_{X}^{2}=1$

Published online by Cambridge University Press:  15 April 2015

Marco Franciosi
Affiliation:
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy email [email protected]
Rita Pardini
Affiliation:
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy email [email protected]
Sönke Rollenske
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany email [email protected]

Abstract

We classify log-canonical pairs $(X,{\rm\Delta})$ of dimension two such that $K_{X}+{\rm\Delta}$ is an ample Cartier divisor with $(K_{X}+{\rm\Delta})^{2}=1$, giving some applications to stable surfaces with $K^{2}=1$. A rough classification is also given in the case where ${\rm\Delta}=0$.

Type
Research Article
Copyright
© The Authors 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeev, V., Higher-dimensional analogues of stable curves, in Proceedings of the International Congress of Mathematicians (Madrid, August 22–30, 2006) vol. II (European Mathematical Society Publishing House, Zürich, 2006), 515536; MR 2275608.Google Scholar
Blache, R., Positivity results for Euler characteristics of singular surfaces, Math. Z. 215 (1994), 112.CrossRefGoogle Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21 (Springer, Berlin, 1990); MR 1045822.Google Scholar
Catanese, F. and Ciliberto, C., Symmetric products of elliptic curves and surfaces of general type with p g = q = 1, J. Algebraic Geom. 2 (1993), 389411; MR 1211993.Google Scholar
Ciliberto, C., Francia, P. and Mendes Lopes, M., Remarks on the bicanonical map for surfaces of general type, Math. Z. 224 (1997), 137166; MR 1427708.CrossRefGoogle Scholar
Franciosi, M., Pardini, R. and Rollenske, S., Computing invariants of semi-log-canonical surfaces, Preprint (2014), arXiv:1404.3548.Google Scholar
Franciosi, M., Pardini, R. and Rollenske, S., Gorenstein stable Godeaux surfaces, in preparation, 2015.Google Scholar
Franciosi, M., Pardini, R. and Rollenske, S., Gorenstein stable surfaces with $K_{X}^{2}=1$and $p_{g}>0$, in preparation, 2015.0$,+in+preparation,+2015.>Google Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977); MR 0463157.CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998), with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original; MR 1658959.CrossRefGoogle Scholar
Kollár, J., Moduli of varieties of general type, in Handbook of moduli: Volume II, Advanced Lectures in Mathematics, vol. 24, eds Farkas, G. and Morrison, I. (International Press, Somerville, MA, 2012), 131158.Google Scholar
Kollár, J., Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200 (Cambridge University Press, Cambridge, 2013), with the collaboration of Sándor Kovács; MR 3057950.CrossRefGoogle Scholar
Kollár, J., Moduli of varieties of general type, book in preparation, 2014.Google Scholar
Kollár, J. and Shepherd-Barron, N., Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299338; MR 922803.CrossRefGoogle Scholar
Liu, W. and Rollenske, S., Geography of Gorenstein stable log surfaces, Trans. Amer. Math. Soc., to appear.Google Scholar
Liu, W. and Rollenske, S., Pluricanonical maps of stable log surfaces, Adv. Math. 258 (2014), 69126; MR 3190424.CrossRefGoogle Scholar
Reid, M., Chapters on algebraic surfaces, in Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Mathematics Series, vol. 3 (American Mathematical Society, Providence, RI, 1997), 3159; MR 1442522.CrossRefGoogle Scholar
Rollenske, S., A new irreducible component of the moduli space of stable Godeaux surfaces, Preprint (2014), arXiv:1404.7027.Google Scholar
Sakai, F., Semistable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254 (1980), 89120; MR 597076.CrossRefGoogle Scholar