Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:01:00.772Z Has data issue: false hasContentIssue false

Level structures on abelian varieties and Vojta’s conjecture

Published online by Cambridge University Press:  06 February 2017

Dan Abramovich
Affiliation:
Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA email [email protected]
Anthony Várilly-Alvarado
Affiliation:
Department of Mathematics, MS 136, Rice University, 6100 S. Main St., Houston, TX 77005, USA email [email protected]

Abstract

Assuming Vojta’s conjecture, and building on recent work of the authors, we prove that, for a fixed number field $K$ and a positive integer $g$, there is an integer $m_{0}$ such that for any $m>m_{0}$ there is no principally polarized abelian variety $A/K$ of dimension $g$ with full level-$m$ structure. To this end, we develop a version of Vojta’s conjecture for Deligne–Mumford stacks, which we deduce from Vojta’s conjecture for schemes.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, D. and Várilly-Alvarado, A., Level structures on abelian varieties, Kodaira dimensions, and Lang’s conjecture, Preprint (2016), arXiv:1601.02483.Google Scholar
Faltings, G. and Chai, C.-L., Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22 (Springer, Berlin, 1990), with an appendix by David Mumford.Google Scholar
Flexor, M. and Oesterlé, J., Sur les points de torsion des courbes elliptiques , Astérisque 183 (1990), 2536; Séminaire sur les pinceaux de courbes elliptiques (Paris, 1988).Google Scholar
Frey, G., Links between solutions of A - B = C and elliptic curves , in Number theory (Ulm, 1987), Lecture Notes in Mathematics, vol. 1380 (Springer, New York, 1989), 3162.Google Scholar
Hindry, M. and Silverman, J. H., The canonical height and integral points on elliptic curves , Invent. Math. 93 (1988), 419450.Google Scholar
Hindry, M. and Silverman, J. H., Diophantine geometry: an introduction, Graduate Texts in Mathematics, vol. 201 (Springer, New York, 2000).Google Scholar
Kamienny, S., Points of order p on elliptic curves over Q(√p) , Math. Ann. 261 (1982), 413424.Google Scholar
Kresch, A. and Vistoli, A., On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map , Bull. Lond. Math. Soc. 36 (2004), 188192.CrossRefGoogle Scholar
Lan, K.-W., Compactifications of PEL-type Shimura varieties in ramified characteristics , Forum Math. Sigma 4:e1 , doi:10.1017/fms.2015.31.Google Scholar
Madapusi Pera, K., Toroidal compactifications of integral models of Shimura varieties of Hodge type, http://www.math.uchicago.edu/∼keerthi/papers/toroidal_new.pdf, 2015.Google Scholar
Manin, J. I., The p-torsion of elliptic curves is uniformly bounded , Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459465.Google Scholar
Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres , Invent. Math. 124 (1996), 437449.Google Scholar
Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322 (Springer, Berlin, 1999); translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder.CrossRefGoogle Scholar
Olsson, M. C., Hom -stacks and restriction of scalars , Duke Math. J. 134 (2006), 139164.CrossRefGoogle Scholar
Silverberg, A., Points of finite order on abelian varieties , in p-adic methods in number theory and algebraic geometry, Contemporary Mathematics, vol. 133 (American Mathematical Society, Providence, RI, 1992), 175193.Google Scholar
Stroh, B., Compactification de variétés de Siegel aux places de mauvaise réduction , Bull. Soc. Math. France 138 (2010), 259315.CrossRefGoogle Scholar
Szpiro, L., Discriminant et conducteur des courbes elliptiques , Astérisque 183 (1990), 718; Séminaire sur les pinceaux de courbes elliptiques (Paris, 1988).Google Scholar
Vojta, P., A more general abc conjecture , Int. Math. Res. Not. IMRN 21 (1998), 11031116.Google Scholar
Zuo, K., On the negativity of kernels of Kodaira–Spencer maps on Hodge bundles and applications , Asian J. Math. 4 (2000), 279301; Kodaira’s issue.Google Scholar