Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:34:09.837Z Has data issue: false hasContentIssue false

The least common multiple of a quadratic sequence

Published online by Cambridge University Press:  13 December 2010

Javier Cilleruelo*
Affiliation:
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For any irreducible quadratic polynomial f(x) in ℤ[x], we obtain the estimate log l.c.m.(f(1),…,f(n))=nlog n+Bn+o(n), where B is a constant depending on f.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[Bat02]Bateman, P., A limit involving least common multiples: 10797, Amer. Math. Monthly 109 (2002), 393394.Google Scholar
[Che52]Chebyshev, P. L., Memoire sur les nombres premiers, J. Math. Pures Appl. 17 (1852), 366390.Google Scholar
[DFI95]Duke, W., Friedlander, J. and Iwaniec, H., Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. (2) 141 (1995), 423441.Google Scholar
[HW08]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, sixth edition (Oxford University Press, Oxford, 2008).CrossRefGoogle Scholar
[LS96]Lenstra, H. and Stevenhagen, P., Chebotarëv and his density theorem, Math. Intelligencer 18 (1996), 2637.Google Scholar
[Tot00]Toth, A., Roots of quadratic congruences, Int. Math. Res. Not. 14 (2000), 719739.Google Scholar