Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T04:41:27.723Z Has data issue: false hasContentIssue false

A gap principle for dynamics

Published online by Cambridge University Press:  26 April 2010

Robert L. Benedetto
Affiliation:
Department of Mathematics, Amherst College, Amherst, MA 01002, USA (email: [email protected])
Dragos Ghioca
Affiliation:
Department of Mathematics & Computer Science, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada (email: [email protected])
Pär Kurlberg
Affiliation:
Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden (email: [email protected])
Thomas J. Tucker
Affiliation:
Department of Mathematics, Hylan Building, University of Rochester, Rochester, NY 14627, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f1,…,fg∈ℂ(z) be rational functions, let Φ=(f1,…,fg) denote their coordinate-wise action on (ℙ1)g, let V ⊂(ℙ1)g be a proper subvariety, and let P be a point in (ℙ1)g(ℂ). We show that if 𝒮={n≥0:Φn(P)∈V (ℂ)} does not contain any infinite arithmetic progressions, then 𝒮 must be a very sparse set of integers. In particular, for any k and any sufficiently large N, the number of nN such that Φn(P)∈V (ℂ) is less than log kN, where log k denotes the kth iterate of the log function. This result can be interpreted as an analogue of the gap principle of Davenport–Roth and Mumford.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Abramovich, D., Subvarieties of semiabelian varieties, Compositio Math. 90 (1994), 3752.Google Scholar
[2]Bell, J. P., A generalised Skolem–Mahler–Lech theorem for affine varieties, J. Lond. Math. Soc. (2) 73 (2006), 367379.CrossRefGoogle Scholar
[3]Bell, J. P., Ghioca, D. and Tucker, T. J., The dynamical Mordell–Lang problem for étale maps, Amer. J. Math., to appear, available online at http://arxiv.org/abs/0808.3266.Google Scholar
[4]Benedetto, R. L., Ghioca, D., Kurlberg, P. and Tucker, T. J., The dynamical Mordell–Lang conjecture (with an appendix by Umberto Zannier), submitted for publication, available online at http://arxiv.org/abs/0712.2344.Google Scholar
[5]Davenport, H. and Roth, K. F., Rational approximations to algebraic numbers, Mathematika 2 (1955), 160167.CrossRefGoogle Scholar
[6]Denis, L., Géométrie et suites récurrentes, Bull. Soc. Math. France 122 (1994), 1327.CrossRefGoogle Scholar
[7]Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349366.CrossRefGoogle Scholar
[8]Faltings, G., The general case of S. Lang’s conjecture, in Barsotti symposium in algebraic geometry (Abano Terme, 1991), Perspectives on Mathematics, vol. 15 (Academic Press, San Diego, CA, 1994), 175182.CrossRefGoogle Scholar
[9]Ghioca, D. and Tucker, T. J., Periodic points, linearizing maps, and the dynamical Mordell–Lang problem, J. Number Theory 129 (2009), 13921403.CrossRefGoogle Scholar
[10]Ghioca, D., Tucker, T. J. and Zieve, M., Linear relations between polynomial orbits, submitted for publication, available at http://arxiv.org/abs/0807.3576, 27 pages.Google Scholar
[11]Ghioca, D., Tucker, T. J. and Zieve, M., Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture, Invent. Math. 171 (2008), 463483.CrossRefGoogle Scholar
[12]Lech, C., A note on recurring series, Ark. Mat. 2 (1953), 417421.CrossRefGoogle Scholar
[13]Mumford, D., A remark on Mordell’s conjecture, Amer. J. Math. 87 (1965), 10071016.CrossRefGoogle Scholar
[14]Raynaud, M., Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207233.CrossRefGoogle Scholar
[15]Raynaud, M., Sous-variétés d’une variété abélienne et points de torsion, in Arithmetic and geometry, Vol. I, Progress in Mathematics, vol. 35 (Birkhäuser, Boston, MA, 1983), 327352.CrossRefGoogle Scholar
[16]Rivera-Letelier, J., Dynamique des fonctions rationnelles sur des corps locaux, Astérisque (2003), no. 287, 147–230, Geometric methods in dynamics. II.Google Scholar
[17]Silverman, J. H., Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), 793829.CrossRefGoogle Scholar
[18]Silverman, J. H., The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241 (Springer, New York, 2007); MR 2316407 (2008c:11002).CrossRefGoogle Scholar
[19]Ullmo, E., Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), 167179.CrossRefGoogle Scholar
[20]Vojta, P., Integral points on subvarieties of semiabelian varieties. I, Invent. Math. 126 (1996), 133181.CrossRefGoogle Scholar
[21]Zhang, S., Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), 159165.CrossRefGoogle Scholar
[22]Zhang, S., Distributions in algebraic dynamics, Survey in Differential Geometry, vol. 10 (International Press, Somerville, MA, 2006), 381430.Google Scholar