Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T18:14:12.711Z Has data issue: false hasContentIssue false

Finiteness of fundamental groups

Published online by Cambridge University Press:  01 February 2017

Zhiyu Tian
Affiliation:
CNRS, Institut Fourier UMR 5582, Université Grenoble Alpes, 38058 Grenoble Cedex 9, France email [email protected]
Chenyang Xu
Affiliation:
Beijing International Center for Mathematical Research, Beijing 100871, China email [email protected]

Abstract

We show that the finiteness of the fundamental groups of the smooth locus of lower dimensional log Fano pairs would imply the finiteness of the local fundamental group of Kawamata log terminal (klt) singularities. As an application, we verify that the local fundamental group of a three-dimensional klt singularity and the fundamental group of the smooth locus of a three-dimensional Fano variety with canonical singularities are always finite.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AIM, List of problems from the workshop on rational curves on algebraic varieties, 2007,http://www.aimath.org/WWN/rationalcurves/rationalcurves.pdf.Google Scholar
Atiyah, M. F., Elliptic operators, discrete groups and von Neumann algebras , in Colloque ‘Analyse et Topologie’ en l’Honneur de Henri Cartan (Orsay, 1974), Astérisque, vol. 32–33 (Société Mathématique de France, Paris, 1976), 4372.Google Scholar
Birkar, C., Cascini, P., Hacon, C. and McKernan, J., Existence of minimal models for varieties of log general type , J. Amer. Math. Soc. 23 (2010), 405468.Google Scholar
Campana, F., Connexité rationnelle des variétés de Fano , Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 539545.Google Scholar
Campana, F. and Claudon, B., Abelianity conjecture for special compact Kähler 3-folds , Proc. Edinb. Math. Soc. (2) 57 (2014), 5578.Google Scholar
Campana, F. and Demailly, J., Cohomologie L 2 sur les revêtements d’une variété complexe compacte , Ark. Mat. 39 (2001), 263282.Google Scholar
Demailly, J., Estimations L 2 pour l’opérateur ̄ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète , Ann. Sci. Éc. Norm. Supér. (4) 15 (1982), 457511.Google Scholar
Demailly, J., Singular Hermitian metrics on positive line bundles , in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Mathematics, vol. 1507 (Springer, Berlin, 1992), 87104.Google Scholar
Eyssidieux, P., Invariants de von Neumann des faisceaux analytiques cohérents , Math. Ann. 317 (2000), 527566.Google Scholar
Fujiki, A., Kobayashi, R. and Lu, S., On the fundamental group of certain open normal surfaces , Saitama Math. J. 11 (1993), 1520.Google Scholar
Goresky, M., Whitney stratified chains and cochains , Trans. Amer. Math. Soc. 267 (1981), 175196.Google Scholar
Goresky, M. and MacPherson, R., Morse theory and intersection homology theory , in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101 (Société Mathématique de France, Paris, 1983), 135192.Google Scholar
Goresky, M. and MacPherson, R., Stratified Morse theory , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14 (Springer, Berlin, 1988).Google Scholar
Greb, D., Kebekus, S. and Peternell, T., Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of Abelian varieties , Duke Math. J. 165 (2016), 19652004.Google Scholar
Gromov, M., Kähler hyperbolicity and L 2 -Hodge theory , J. Differential Geom. 33 (1991), 263292.Google Scholar
Gurjar, R. V. and Zhang, D.-Q., 𝜋1 of smooth points of a log del Pezzo surface is finite. I , J. Math. Sci. Univ. Tokyo 1 (1994), 137180.Google Scholar
Gurjar, R. V. and Zhang, D.-Q., 𝜋1 of smooth points of a log del Pezzo surface is finite. II , J. Math. Sci. Univ. Tokyo 2 (1995), 165196.Google Scholar
Keel, S. and McKernan, J., Rational curves on quasi-projective surfaces , Mem. Amer. Math. Soc. 140 (1999).Google Scholar
Kobayashi, S., On compact Kähler manifolds with positive definite Ricci tensor , Ann. of Math. (2) 74 (1961), 570574.Google Scholar
Kollár, J., Shafarevich maps and automorphic forms , M. B. Porter Lectures (Princeton University Press, Princeton, NJ, 1995).Google Scholar
Kollár, J., Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200 (Cambridge University Press, Cambridge, 2013); with the collaboration of Sándor Kovács.Google Scholar
Kollár, J. et al. , Flips and abundance for algebraic threefolds , in Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque, vol. 211 (Société Mathématique de France, Paris, 1992), 1258.Google Scholar
Kollár, J., Miyaoka, Y. and Mori, S., Rational connectedness and boundedness of Fano manifolds , J. Differential Geom. 36 (1992), 765779.Google Scholar
Kollár, J., Miyaoka, Y., Mori, S. and Takagi, H., Boundedness of canonical Q -Fano 3-folds , Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 7377.CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties , Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998); with the collaboration of C. H. Clemens and A. Corti; translated from the 1998 Japanese original.Google Scholar
Kollár, J. and Xu, C., The dual complex of Calabi–Yau pairs , Invent. Math. 205 (2016), 527557.Google Scholar
Kumar, S., Finiteness of local fundamental groups for quotients of affine varieties under reductive groups , Comment. Math. Helv. 68 (1993), 209215.Google Scholar
Miyaoka, Y. and Peternell, T., Geometry of Higher-dimensional Algebraic Varieties, DMV Seminar, vol. 26 (Birkhäuser, Basel, 1997).CrossRefGoogle Scholar
Namikawa, Y., Fundamental groups of symplectic singularities, Preprint (2013), arXiv:1301.1008.Google Scholar
Noohi, B., Fundamental groups of algebraic stacks , J. Inst. Math. Jussieu 3 (2004), 69103.CrossRefGoogle Scholar
Noohi, B., Mapping stacks of topological stacks , J. Reine Angew. Math. 2010 (2010), 117133.Google Scholar
Reid, M., Young person’s guide to canonical singularities , in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 345414.Google Scholar
Shepherd-Barron, N. I. and Wilson, P. M. H., Singular threefolds with numerically trivial first and second Chern classes , J. Algebraic Geom. 3 (1994), 265281.Google Scholar
Takayama, S., Simple connectedness of weak Fano varieties , J. Algebraic Geom. 9 (2000), 403407.Google Scholar
Wang, B.-L. and Wang, H., Localized index and L 2 -Lefschetz fixed-point formula for orbifolds , J. Differential Geom. 102 (2016), 285349.Google Scholar
Xu, C., Finiteness of algebraic fundamental groups , Compositio Math. 150 (2014), 409414.Google Scholar
Yau, S., On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I , Comm. Pure Appl. Math. 31 (1978), 339411.Google Scholar
Zhang, D.-Q., The fundamental group of the smooth part of a log Fano variety , Osaka J. Math. 32 (1995), 637644.Google Scholar