Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:08:30.335Z Has data issue: false hasContentIssue false

Equivariant $K$-theory of Grassmannians II: the Knutson–Vakil conjecture

Published online by Cambridge University Press:  09 March 2017

Oliver Pechenik
Affiliation:
Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA email [email protected]
Alexander Yong
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA email [email protected]

Abstract

In 2005, Knutson–Vakil conjectured a puzzle rule for equivariant $K$-theory of Grassmannians. We resolve this conjecture. After giving a correction, we establish a modified rule by combinatorially connecting it to the authors’ recently proved tableau rule for the same Schubert calculus problem.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D., Griffeth, S. and Miller, E., Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces , J. Eur. Math. Soc. 13 (2011), 5784.Google Scholar
Buch, A., Mutations of puzzles and equivariant cohomology of two-step flag varieties , Ann. of Math. (2) 182 (2015), 173220.CrossRefGoogle Scholar
Buch, A. S., Kresch, A., Purbhoo, K. and Tamvakis, H., The puzzle conjecture for the cohomology of two-step flag manifolds , J. Algebraic Combin. 44 (2016), 9731007.Google Scholar
Buch, A., Kresch, A. and Tamvakis, H., Gromov–Witten invariants on Grassmannians , J. Amer. Math. Soc. 16 (2003), 901915.Google Scholar
Coşkun, I. and Vakil, R., Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus , in Algebraic geometry—Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, vol. 80 (American Mathematical Society, Providence, RI, 2009), 77124.Google Scholar
Fulton, W. and Lascoux, A., A Pieri formula in the Grothendieck ring of a flag bundle , Duke Math. J. 76 (1994), 711729.Google Scholar
Knutson, A., Puzzles, positroid varieties, and equivariant K-theory of Grassmannians, Preprint (2010), arXiv:1008.4302.Google Scholar
Knutson, A. and Purbhoo, K., Product and puzzle formulae for GL(n) Belkale–Kumar coefficients , Electron. J. Combin. 18 (2011), P76.Google Scholar
Knutson, A. and Tao, T., Puzzles and (equivariant) cohomology of Grassmannians , Duke Math. J. 119 (2003), 221260.Google Scholar
Knutson, A., Tao, T. and Woodward, C., The honeycomb model of GL n (ℂ) tensor products II: puzzles determine facets of the Littlewood–Richardson cone , J. Amer. Math. Soc. 17 (2004), 1948.Google Scholar
Kreiman, V., Equivariant Littlewood–Richardson skew tableaux , Trans. Amer. Math. Soc. 362 (2010), 25892617.Google Scholar
Lascoux, A. and Schützenberger, M.-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux , C. R. Acad. Sci. Paris 295 (1982), 629633.Google Scholar
Pechenik, O. and Yong, A., Equivariant K-theory of Grassmannians, Preprint (2015), arXiv:1506.01992.Google Scholar
Purbhoo, K., Puzzles, tableaux, and mosaics , J. Algebraic Combin. 28 (2008), 461480.CrossRefGoogle Scholar
Thomas, H. and Yong, A., Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble), to appear. Preprint (2012), arXiv:1207.3209.Google Scholar
Vakil, R., A geometric Littlewood–Richardson rule , Ann. of Math. (2) 164 (2006), 371422.Google Scholar