Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:49:53.561Z Has data issue: false hasContentIssue false

Elliptic curves with a given number of points over finite fields

Published online by Cambridge University Press:  01 November 2012

Chantal David
Affiliation:
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve West, Montréal, Québec H3G 1M8, Canada (email: [email protected])
Ethan Smith
Affiliation:
Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, Québec H3C 3J7, Canada Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931-1295, USA (email: [email protected])

Abstract

Given an elliptic curve E and a positive integer N, we consider the problem of counting the number of primes p for which the reduction of E modulo p possesses exactly N points over 𝔽p. On average (over a family of elliptic curves), we show bounds that are significantly better than what is trivially obtained by the Hasse bound. Under some additional hypotheses, including a conjecture concerning the short-interval distribution of primes in arithmetic progressions, we obtain an asymptotic formula for the average.

Type
Research Article
Copyright
© The Author(s) 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BCD11]Balog, A., Cojocaru, A.-C. and David, C., Average twin prime conjecture for elliptic curves, Amer. J. Math. 133 (2011), 11791229.CrossRefGoogle Scholar
[BBIJ05]Battista, J., Bayless, J., Ivanov, D. and James, K., Average Frobenius distributions for elliptic curves with nontrivial rational torsion, Acta Arith. 119 (2005), 8191.CrossRefGoogle Scholar
[Bur63]Burgess, D. A., On character sums and L-series. II, Proc. Lond. Math. Soc. (3) 13 (1963), 524536.CrossRefGoogle Scholar
[CFJKP11]Calkin, N., Faulkner, B., James, K., King, M. and Penniston, D., Average Frobenius distributions for elliptic curves over abelian extensions, Acta Arith. 149 (2011), 215244.CrossRefGoogle Scholar
[CL84a]Cohen, H. and Lenstra, H. W. Jr., Heuristics on class groups, in Number theory (New York, 1982), Lecture Notes in Mathematics, vol. 1052 (Springer, Berlin, 1984), 2636.Google Scholar
[CL84b]Cohen, H. and Lenstra, H. W. Jr., Heuristics on class groups of number fields, in Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Mathematics, vol. 1068 (Springer, Berlin, 1984), 3362.CrossRefGoogle Scholar
[CIJ]Cojocaru, A. C., Iwaniec, H. and Jones, N., The Lang–Trotter conjecture on Frobenius fields, Preprint.Google Scholar
[Dav80]Davenport, H., Multiplicative number theory, Graduate Texts in Mathematics, vol. 74, second edition (Springer, New York, 1980).CrossRefGoogle Scholar
[DP99]David, C. and Pappalardi, F., Average Frobenius distributions of elliptic curves, Int. Math. Res. Not. IMRN 1999 (1999), 165183.CrossRefGoogle Scholar
[DP04]David, C. and Pappalardi, F., Average Frobenius distribution for inerts in , J. Ramanujan Math. Soc. 19 (2004), 181201.Google Scholar
[DS12]David, C. and Smith, E., A Cohen–Lenstra phenomenon for elliptic curves, Preprint (2012), arXiv:1206.1585.Google Scholar
[FR96]Fouvry, E. and Ram Murty, M., On the distribution of supersingular primes, Canad. J. Math. 48 (1996), 81104.CrossRefGoogle Scholar
[GS03]Granville, A. and Soundararajan, K., The distribution of values of L(1,χ d), Geom. Funct. Anal. 13 (2003), 9921028.CrossRefGoogle Scholar
[HW79]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, fifth edition (The Clarendon Press, Oxford University Press, New York, NY, 1979).Google Scholar
[IK04]Iwaniec, H. and Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
[Jam04]James, K., Average Frobenius distributions for elliptic curves with 3-torsion, J. Number Theory 109 (2004), 278298.CrossRefGoogle Scholar
[JS11]James, K. and Smith, E., Average Frobenius distribution for elliptic curves defined over finite Galois extensions of the rationals, Math. Proc. Cambridge Philos. Soc. 150 (2011), 439458.CrossRefGoogle Scholar
[Kob88]Koblitz, N., Primality of the number of points on an elliptic curve over a finite field, Pacific J. Math. 131 (1988), 157165.CrossRefGoogle Scholar
[Kow06]Kowalski, E., Analytic problems for elliptic curves, J. Ramanujan Math. Soc. 21 (2006), 19114.Google Scholar
[LT76]Lang, S. and Trotter, H., Distribution of Frobenius automorphisms in GL2-extensions of the rational numbers, in Frobenius distributions in GL2-extensions, Lecture Notes in Mathematics, vol. 504 (Springer, Berlin, 1976).CrossRefGoogle Scholar
[LPZ10]Languasco, A., Perelli, A. and Zaccagnini, A., On the Montgomery–Hooley theorem in short intervals, Mathematika 56 (2010), 231243.CrossRefGoogle Scholar
[Len87]Lenstra, H. W. Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), 649673.Google Scholar
[MV07]Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97 (Cambridge University Press, Cambridge, 2007).Google Scholar