Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:22:43.813Z Has data issue: false hasContentIssue false

The dynamical Manin–Mumford conjecture and the dynamical Bogomolov conjecture for endomorphisms of $(\mathbb{P}^{1})^{n}$

Published online by Cambridge University Press:  21 May 2018

Dragos Ghioca
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada email [email protected]
Khoa D. Nguyen
Affiliation:
University of Calgary, Mathematical Sciences Building MS 542, 2500 University Drive NW, Calgary, AB T2N 4T4, Canada email [email protected]
Hexi Ye
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, 310027, China email [email protected]

Abstract

We prove Zhang’s dynamical Manin–Mumford conjecture and dynamical Bogomolov conjecture for dominant endomorphisms $\unicode[STIX]{x1D6F7}$ of $(\mathbb{P}^{1})^{n}$ . We use the equidistribution theorem for points of small height with respect to an algebraic dynamical system, combined with an analysis of the symmetries of the Julia set for a rational function.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, M., A finiteness theorem for canonical heights attached to rational maps over function fields , J. Reine Angew. Math. 626 (2009), 205233.Google Scholar
Baker, M. and Hsia, L.-C., Canonical heights, transfinite diameters, and polynomial dynamics , J. Reine Angew. Math. 585 (2005), 6192.Google Scholar
Baker, M. and Rumely, R., Equidistribution of small points, rational dynamics, and potential theory , Ann. Inst. Fourier (Grenoble) 56 (2006), 625688.CrossRefGoogle Scholar
Benedetto, R. L., Heights and preperiodic points of polynomials over function fields , Int. Math. Res. Not. IMRN 62 (2005), 38553866.Google Scholar
Bombieri, E. and Gubler, W., Heights in diophantine geometry, New Mathematical Monographs, vol. 4 (Cambridge University Press, Cambridge, 2006).Google Scholar
Brolin, H., Invariant sets under iteration of rational functions , Ark. Mat. 6 (1965), 103144.Google Scholar
Call, G. and Silverman, J., Canonical heights on varieties with morphisms , Compos. Math. 89 (1993), 163205.Google Scholar
Chambert-Loir, A., Mesures et équidistribution sur les espaces de Berkovich , J. Reine Angew. Math. 595 (2006), 215235.Google Scholar
Douady, A. and Hubbard, J., A proof of Thurston’s topological characterization of rational functions , Acta Math. 171 (1993), 263297.Google Scholar
Dujardin, R. and Favre, C., The dynamical Manin–Mumford problem for plane polynomial automorphisms , J. Eur. Math. Soc. (JEMS) 19 (2017), 34213465.Google Scholar
Faber, X. W. C., Equidistribution of dynamically small subvarieties over the function field of a curve , Acta Arith. 137 (2009), 345389.CrossRefGoogle Scholar
Faltings, G., Calculus on arithmetic surfaces , Ann. of Math. (2) 119 (1984), 387424.Google Scholar
Favre, C. and Rivera-Letelier, J., Équidistribution quantitative des points de petite hauteur sur la droite projective , Math. Ann. 355 (2006), 311361.CrossRefGoogle Scholar
Freire, A., Lopes, A. and Mañé, R., An invariant measure for rational maps , Bol. Soc. Brasil Mat. 14 (1983), 4562.CrossRefGoogle Scholar
Ghioca, D. and Nguyen, K. D., Dynamical anomalous subvarieties: structure and bounded height theorems , Adv. Math. 288 (2016), 14331462.Google Scholar
Ghioca, D., Nguyen, K. D. and Ye, H., The Dynamical Manin–Mumford Conjecture and the Dynamical Bogomolov Conjecture for split rational maps , J. Eur. Math. Soc. (JEMS) (2017), 25; to appear.Google Scholar
Ghioca, D. and Tucker, T. J., Proof of a Dynamical Bogomolov Conjecture for lines under polynomial actions , Proc. Amer. Math. Soc. 138 (2010), 937942.Google Scholar
Ghioca, D., Tucker, T. J. and Zhang, S., Towards a Dynamical Manin–Mumford Conjecture , Int. Math. Res. Not. IMRN 2011 (2011), 51095122.Google Scholar
Gubler, W., Equidistribution over function fields , Manuscripta Math. 127 (2008), 485510.CrossRefGoogle Scholar
Hamilton, D., Length of Julia curves , Pacific J. Math. 169 (1995), 7593.CrossRefGoogle Scholar
Hriljac, P., Heights and Arakelov’s intersection theory , Amer. J. Math. 107 (1985), 2338.CrossRefGoogle Scholar
Laurent, M., Equations diophantiennes exponentielles , Invent. Math. 78 (1984), 299327.Google Scholar
Levin, G. M., Symmetries on Julia sets , Mat. Zametki 48 (1990), 72–79, 159.Google Scholar
Lyubich, M., Entropy properties of rational endomorphisms of the Riemann sphere , Ergod. Th. & Dynam. Sys. 3 (1983), 351385.Google Scholar
Mañé, R., On the uniqueness of the maximizing measure for rational maps , Bol. Soc. Bras. Math. 14 (1983), 2743.CrossRefGoogle Scholar
McQuillan, M., Division points on semi-abelian varieties , Invent. Math. 120 (1995), 143159.CrossRefGoogle Scholar
Medvedev, A., Minimal sets in ACFA, PhD thesis, University of California, Berkeley (2007), 96 pp.Google Scholar
Medvedev, A. and Scanlon, T., Invariant varieties for polynomial dynamical systems , Ann. of Math. (2) 179 (2014), 81177.CrossRefGoogle Scholar
Milnor, J., Dynamics in one complex variable (Vieweg, Wiesbaden, Germany, 2000).CrossRefGoogle Scholar
Milnor, J., On Lattès maps, Preprint (2004), arXiv:math/0402147 [math.DS].Google Scholar
Mimar, A., On the preperiodic points of an endomorphism of $\mathbb{P}^{1}\times \mathbb{P}^{1}$ which lie on a curve, PhD thesis, Columbia University (1997).Google Scholar
Mimar, A., On the preperiodic points of an endomorphism of ℙ1 ×ℙ1 which lie on a curve , Trans. Amer. Math. Soc. 365 (2013), 161193.Google Scholar
Moriwaki, A., Hodge index theorem for arithmetic cycles of codimension one , Math. Res. Lett. 3 (1996), 173183.Google Scholar
Raynaud, M., Sous-variétés d’une variété abélienne et points de torsion , in Arithmetic and geometry, Vol. I, Progress in Mathematics, vol. 35 (Birkhäuser, Boston, MA, 1983), 327352.Google Scholar
Thurston, W., On the combinatorics of iterated rational maps, Preprint, 1985.Google Scholar
Ullmo, E., Positivité et discrétion des points algébriques des courbes , Ann. of Math. (2) 147 (1998), 167179.Google Scholar
Yuan, X., Big line bundles over arithmetic varieties , Invent. Math. 173 (2008), 603649.CrossRefGoogle Scholar
Yuan, X. and Zhang, S., Calabi theorem and algebraic dynamics, Preprint.Google Scholar
Yuan, X. and Zhang, S., Small points and Berkovich metrics, Preprint,http://www.math.columbia.edu/∼szhang/papers/Preprints.html.Google Scholar
Yuan, X. and Zhang, S., The arithmetic Hodge index theorem for adelic line bundles II, Preprint (2013), arXiv:1304.3539.Google Scholar
Yuan, X. and Zhang, S., The arithmetic Hodge index theorem for adelic line bundles , Math. Ann. 367 (2017), 11231171.Google Scholar
Zannier, U., Some problems of unlikely intersections in arithmetic and geometry, Annals of Mathematics Studies, vol. 181 (Princeton University Press, Princeton, NJ, 2012), with appendixes by David Masser.Google Scholar
Zdunik, A., Parabolic orbifolds and the dimension of the maximal measure for rational maps , Inv. Math. 99 (1990), 627649.Google Scholar
Zhang, S., Positive line bundles on arithmetic varieties , J. Amer. Math. Soc. 8 (1995), 187221.Google Scholar
Zhang, S., Small points and adelic metrics , J. Alg. Geom. 4 (1995), 281300.Google Scholar
Zhang, S., Equidistribution of small points on abelian varieties , Ann. of Math. (2) 147 (1998), 159165.Google Scholar
Zhang, S., Distributions in algebraic dynamics , in Survey in Differential Geometry, Vol. 10 (International Press, 2006), 381430.Google Scholar