Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:30:24.616Z Has data issue: false hasContentIssue false

Derived splinters in positive characteristic

Published online by Cambridge University Press:  10 July 2012

Bhargav Bhatt*
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper introduces the notion of a derived splinter. Roughly speaking, a scheme is a derived splinter if it splits off from the coherent cohomology of any proper cover. Over a field of characteristic 0, this condition characterises rational singularities, as suggested by the work of Kovács. Our main theorem asserts that over a field of characteristic p, derived splinters are the same as (underived) splinters, i.e. schemes that split off from any finite cover. Using this result, we answer some questions of Karen Smith concerning the extension of Serre/Kodaira-type vanishing results beyond the class of ample line bundles in positive characteristic; these are purely projective geometric statements independent of singularity considerations. In fact, we can prove ‘up to finite cover’ analogues in characteristic p of many vanishing theorems known in characteristic 0. All these results fit naturally in the study of F-singularities, and are motivated by a desire to understand the direct summand conjecture.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[AdJ97]Abramovich, D. and de Jong, A. J., Smoothness, semistability, and toroidal geometry, J. Algebraic Geom. 6 (1997), 789801; MR 1487237(99b:14016).Google Scholar
[AOV08]Abramovich, D., Olsson, M. and Vistoli, A., Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), 10571091; MR 2427954(2009c:14002).CrossRefGoogle Scholar
[Bei11]Beilinson, A., p-adic periods and the derived de Rham cohomology, Preprint (2011), arXiv:1102.1294.Google Scholar
[BBD82]Beĭlinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5171; MR 751966(86g:32015).Google Scholar
[Bha11a]Bhatt, B., Annihilating the cohomology of group schemes, Algebra Number Theory, to appear, arXiv:1109.2383.Google Scholar
[Bha11b]Bhatt, B., p-divisibility for coherent cohomology, Preprint (2011), http://www-personal.umich.edu/∼bhattb/papers.html.Google Scholar
[BST11]Blickle, M., Schwede, K. and Tucker, K., F-singularities via alterations, Preprint (2011), arXiv:1107.3807.Google Scholar
[BS55]Bott, R. and Samelson, H., The cohomology ring of G/T, Proc. Natl. Acad. Sci. USA 41 (1955), 490493; MR 0071773(17,182f).CrossRefGoogle ScholarPubMed
[BS98]Brodmann, M. P. and Sharp, R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60 (Cambridge University Press, Cambridge, 1998); MR 1613627(99h:13020).CrossRefGoogle Scholar
[Con07]Conrad, B., Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), 205257; MR 2356346(2009d:14002).Google Scholar
[DI87]Deligne, P. and Illusie, L., Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247270; MR 894379(88j:14029).CrossRefGoogle Scholar
[DM69]Deligne, P. and Mumford, D., The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75109; MR 0262240(41#6850).CrossRefGoogle Scholar
[Ful97]Fulton, W., Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, vol. 35 (Cambridge University Press, Cambridge, 1997), MR 1464693(99f:05119).Google Scholar
[Gro61]Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 1167.Google Scholar
[Gro66]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1255.Google Scholar
[Gro68]Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Advanced Studies in Pure Mathematics, vol. 2 (North-Holland, Amsterdam, 1968), augmenté d’un exposé par Michèle Raynaud, Séminaire de Géométrie Algébrique du Bois-Marie, 1962; MR 0476737(57#16294).Google Scholar
[Har77]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977).CrossRefGoogle Scholar
[Hei02]Heitmann, R. C., The direct summand conjecture in dimension three, Ann. of Math. (2) 156 (2002), 695712; MR 1933722(2003m:13008).CrossRefGoogle Scholar
[Hir64]Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. (2) 79 (1964), 109203 205–326; MR 0199184(33#7333).CrossRefGoogle Scholar
[Hoc73]Hochster, M., Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 2543; MR 0349656(50#2149).CrossRefGoogle Scholar
[Hoc07]Hochster, M., Homological conjectures, old and new, Illinois J. Math. 51 (2007), 151169 (electronic); MR 2346192(2008j:13034).CrossRefGoogle Scholar
[HH92]Hochster, M. and Huneke, C., Infinite integral extensions and big Cohen–Macaulay algebras, Ann. of Math. (2) 135 (1992), 5389; MR 1147957(92m:13023).CrossRefGoogle Scholar
[HH94]Hochster, M. and Huneke, C., Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), 599670; MR 1297848(95k:13002).Google Scholar
[Hun96]Huneke, C., Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88 (American Mathematical Society, Providence, RI, 1996), with an appendix by Melvin Hochster; MR 1377268(96m:13001).CrossRefGoogle Scholar
[HL07]Huneke, C. and Lyubeznik, G., Absolute integral closure in positive characteristic, Adv. Math. 210 (2007), 498504; MR 2303230(2008d:13005).CrossRefGoogle Scholar
[Ill05]Illusie, L., Grothendieck’s existence theorem in formal geometry, in Fundamental algebraic geometry, Mathematical Surveys and Monographs, vol. 123 (American Mathematical Society, Providence, RI, 2005), with a letter (in French) of Jean-Pierre Serre, 179–233; MR 2223409.Google Scholar
[KM98]Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998), with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original; MR 1658959(2000b:14018).CrossRefGoogle Scholar
[Kov00]Kovács, S. J., A characterization of rational singularities, Duke Math. J. 102 (2000), 187191; MR 1749436(2002b:14005).CrossRefGoogle Scholar
[Lan11]Langer, A., Nef line bundles over finite fields, Preprint (2011), arXiv:1111.6259.Google Scholar
[Lau96]Laumon, G., Cohomology of Drinfeld modular varieties. Part I: Geometry, counting of points and local harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 41 (Cambridge University Press, Cambridge, 1996), MR 1381898(98c:11045a).Google Scholar
[LRT06]Lauritzen, N., Raben-Pedersen, U. and Thomsen, J. F., Global F-regularity of Schubert varieties with applications to D-modules, J. Amer. Math. Soc. 19 (2006), 345355 (electronic); MR 2188129(2006h:14005).CrossRefGoogle Scholar
[Laz04a]Lazarsfeld, R., Positivity in algebraic geometry I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge [Results in Mathematics and Related Areas, 3rd series] A Series of Modern Surveys in Mathematics, vol. 48 (Springer, Berlin, 2004), MR 2095471(2005k:14001a).Google Scholar
[Laz04b]Lazarsfeld, R., Positivity in algebraic geometry II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge [Results in Mathematics and Related Areas, 3rd series] A Series of Modern Surveys in Mathematics, vol. 49 (Springer, Berlin, 2004), ; MR 2095472(2005k:14001b).CrossRefGoogle Scholar
[Mat80]Matsumura, H., Commutative algebra, Mathematics Lecture Note Series, vol. 56, second edition (Benjamin/Cummings, Reading, MA, 1980); MR 575344(82i:13003).Google Scholar
[MS05]Miller, E. and Sturmfels, B., Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227 (Springer, New York, 2005); MR 2110098(2006d:13001).Google Scholar
[Mum67]Mumford, D., Pathologies. III, Amer. J. Math. 89 (1967), 94104; MR 0217091(36#182).CrossRefGoogle Scholar
[MFK94]Mumford, D., Fogarty, J. and Kirwan, F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge [Results in Mathematics and Related Areas, 2nd series], vol. 34, third edition (Springer, Berlin, 1994); MR 1304906(95m:14012).CrossRefGoogle Scholar
[Ohi96]Ohi, T., Direct summand conjecture and descent for flatness, Proc. Amer. Math. Soc. 124 (1996), 19671968; MR 1317044(96i:13008).CrossRefGoogle Scholar
[PS00]Peternell, T. and Sommese, A. J., Ample vector bundles and branched coverings, Comm. Algebra 28 (2000), 55735599 with an appendix by Robert Lazarsfeld, special issue in honor of Robin Hartshorne; MR 1808590(2001k:14079).CrossRefGoogle Scholar
[RG71]Raynaud, M. and Gruson, L., Critères de platitude et de projectivité. Techniques de platification d’un module, Invent. Math. 13 (1971), 189; MR 0308104(46#7219).CrossRefGoogle Scholar
[SS12]Sannai, A. and Singh, A., Galois extensions, plus closure, and maps on local cohomology, Adv. Math. 229 (2012), 18471861.CrossRefGoogle Scholar
[SS10]Schwede, K. and Smith, K. E., Globally F-regular and log Fano varieties, Adv. Math. 224 (2010), 863894; MR 2628797(2011e:14076).CrossRefGoogle Scholar
[Sin99]Singh, A. K., ℚ-Gorenstein splinter rings of characteristic p are F-regular, Math. Proc. Cambridge Philos. Soc. 127 (1999), 201205; MR 1735920(2000j:13006).CrossRefGoogle Scholar
[Smi94]Smith, K. E., Tight closure of parameter ideals, Invent. Math. 115 (1994), 4160; MR 1248078(94k:13006).CrossRefGoogle Scholar
[Smi97a]Smith, K. E., Erratum to vanishing, singularities and effective bounds via prime characteristic local algebra (1997), http://www.math.lsa.umich.edu/∼kesmith/santaerratum.ps.CrossRefGoogle Scholar
[Smi97b]Smith, K. E., F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159180; MR 1428062(97k:13004).CrossRefGoogle Scholar
[Smi97c]Smith, K. E., Vanishing, singularities and effective bounds via prime characteristic local algebra, in Algebraic geometry Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, vol. 62 (American Mathematical Society, Providence, RI, 1997), 289325; MR 1492526(99a:14026).CrossRefGoogle Scholar
[Tot09]Totaro, B., Moving codimension-one subvarieties over finite fields, Amer. J. Math. 131 (2009), 18151833; MR 2567508.CrossRefGoogle Scholar