Article contents
Deformation spaces and normal forms around transversals
Published online by Cambridge University Press: 17 February 2020
Abstract
Given a manifold $M$ with a submanifold $N$, the deformation space ${\mathcal{D}}(M,N)$ is a manifold with a submersion to $\mathbb{R}$ whose zero fiber is the normal bundle $\unicode[STIX]{x1D708}(M,N)$, and all other fibers are equal to $M$. This article uses deformation spaces to study the local behavior of various geometric structures associated with singular foliations, with $N$ a submanifold transverse to the foliation. New examples include $L_{\infty }$-algebroids, Courant algebroids, and Lie bialgebroids. In each case, we obtain a normal form theorem around $N$, in terms of a model structure over $\unicode[STIX]{x1D708}(M,N)$.
- Type
- Research Article
- Information
- Copyright
- © The Authors 2020
References
- 7
- Cited by