Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:17:53.408Z Has data issue: false hasContentIssue false

Constraints on the cohomological correspondence associated to a self map

Published online by Cambridge University Press:  14 May 2019

K. V. Shuddhodan*
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India email [email protected]

Abstract

In this paper we establish some constraints on the eigenvalues for the action of a self map of a proper variety on its $\ell$-adic cohomology. The essential ingredients are a trace formula due to Fujiwara, and the theory of weights.

Type
Research Article
Copyright
© The Author 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany

References

Deligne, P., La conjecture de Weil. I , Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273307.Google Scholar
Deligne, P., Théorie de Hodge III , Publ. Math. Inst. Hautes Études Sci. 44 (1974), 577.Google Scholar
Deligne, P., Séminaire de Géométrie Algébrique du Bois Marie - Cohomologie étale – (SGA 4½), Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977).Google Scholar
Deligne, P., La conjecture de Weil. II , Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.Google Scholar
Esnault, H. and Srinivas, V., Algebraic versus topological entropy for surfaces over finite fields , Osaka J. Math. 50 (2013), 827846.Google Scholar
Fujiwara, K., Rigid geometry, Lefschetz–Verdier trace formula and Deligne’s conjecture , Invent. Math. 127 (1997), 489533.Google Scholar
Gromov, M., On the entropy of holomorphic maps , Enseign. Math. 49 (2003), 217235.Google Scholar
Illusie, L., Miscellany on traces in -adic cohomology: a survey , Jpn. J. Math. 1 (2006), 107136.Google Scholar
Rudin, W., Real and complex analysis (Tata McGraw-Hill Education, New Delhi, 1987).Google Scholar
Truong, T. T., Relations between dynamical degrees, Weil’s Riemann hypothesis and the standard conjectures, Preprint (2016), arXiv:1611.01124.Google Scholar
Yomdin, Y., Volume growth and entropy , Israel J. Math. 57 (1987), 285300.Google Scholar