Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:22:17.744Z Has data issue: false hasContentIssue false

Comparison between Swan conductors and characteristic cycles

Published online by Cambridge University Press:  10 March 2010

Tomoyuki Abe*
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguroku, Tokyo, Japan (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we define Swan conductors for unit-root overconvergent F-isocrystals using the theory of arithmetic 𝒟-modules due to Berthelot. Our Swan conductors are compared with the Swan conductors for -adic sheaves constructed by Kato and Saito using a geometric method. As an application, we prove the integrality of Swan conductors in the sense of Kato and Saito under the ‘resolution of singularities’ assumption.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Berthelot, P., Cohomologie rigide et cohomologie rigide à support propre, première partie, Preprint (1996), Prépublication IRMAR 96-03, Université de Rennes.Google Scholar
[2]Berthelot, P., 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), 185272.CrossRefGoogle Scholar
[3]Berthelot, P., 𝒟-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. 81 (2000).Google Scholar
[4]Berthelot, P., Introduction à la théorie arithmétique des 𝒟-modules, Astérisque 279 (2002), 180.Google Scholar
[5]Caro, D., 𝒟 modules arithmétiques surcohérents. Application aux fonctions L, Ann. Inst. Fourier 54 (2005), 19431996.CrossRefGoogle Scholar
[6]Caro, D., 𝒟-modules arithmétiques associés aux isocristaux surconvergents. Cas lisse, Preprint (2005), available at http://arxiv.org/abs/math/0510422, Bull. Soc. Math. France, to appear.Google Scholar
[7]Caro, D., 𝒟-modules arithmétiques surholonomes, Ann. Sci. École Norm. Sup. (4) 42 (2009), 141192.CrossRefGoogle Scholar
[8]Crew, R., F-isocrystals and p-adic representations, in Algebraic geometry, Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 111138.Google Scholar
[9]Fulton, W., Intersection theory, second edition (Springer, Berlin, 1998).CrossRefGoogle Scholar
[10]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, Berlin, 1977).CrossRefGoogle Scholar
[11]Kato, K., Class field theory, 𝒟-modules, and ramification on higher-dimensional schemes. I, Amer. J. Math. 116 (1994), 757784.CrossRefGoogle Scholar
[12]Kato, K. and Saito, T., Ramification theory for varieties over a perfect field, Ann. of Math. (2) 168 (2008), 3396.CrossRefGoogle Scholar
[13]Laumon, G., Sur la catégorie dérivée des 𝒟-modules filtrés, in Algebraic geometry, Lecture Notes in Mathematics, vol. 1016 (Springer, Berlin, 1983), 151237.CrossRefGoogle Scholar
[14]Tsuzuki, N., Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke Math. J. 111 (2002), 385418.CrossRefGoogle Scholar