Article contents
Companion forms in parallel weight one
Published online by Cambridge University Press: 10 May 2013
Abstract
Let $p\gt 2$ be prime, and let
$F$ be a totally real field in which
$p$ is unramified. We give a sufficient criterion for a
$\mathrm{mod} \hspace{0.167em} p$ Galois representation to arise from a
$\mathrm{mod} \hspace{0.167em} p$ Hilbert modular form of parallel weight one, by proving a ‘companion forms’ theorem in this case. The techniques used are a mixture of modularity lifting theorems and geometric methods. As an application, we show that Serre’s conjecture for
$F$ implies Artin’s conjecture for totally odd two-dimensional representations over
$F$.
- Type
- Research Article
- Information
- Copyright
- © The Author(s) 2013
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:84751:20160412100814536-0917:S0010437X12000875_inline8.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:46911:20160412100814536-0917:S0010437X12000875_inline9.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:70797:20160412100814536-0917:S0010437X12000875_inline10.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:25412:20160412100814536-0917:S0010437X12000875_inline11.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:36204:20160412100814536-0917:S0010437X12000875_inline12.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:35065:20160412100814536-0917:S0010437X12000875_inline13.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:63055:20160412100814536-0917:S0010437X12000875_inline14.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:85793:20160412100814536-0917:S0010437X12000875_inline15.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:72901:20160412100814536-0917:S0010437X12000875_inline16.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:42209:20160412100814536-0917:S0010437X12000875_inline17.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:95907:20160412100814536-0917:S0010437X12000875_inline18.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:57365:20160412100814536-0917:S0010437X12000875_inline19.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:95818:20160412100814536-0917:S0010437X12000875_inline20.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:34315:20160412100814536-0917:S0010437X12000875_inline21.gif?pub-status=live)
- 1
- Cited by