Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T05:36:10.514Z Has data issue: false hasContentIssue false

CM cycles on Shimura curves, and p-adic L-functions

Published online by Cambridge University Press:  15 May 2012

Marc Masdeu*
Affiliation:
Columbia University, Rm 415, MC 4441, 2990 Broadway, New York, NY 10027, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be a modular form of weight k≥2 and level N, let K be a quadratic imaginary field and assume that there is a prime p exactly dividing N. Under certain arithmetic conditions on the level N and the field K, one can attach to this data a p-adic L-function Lp (f,K,s) , as done by Bertolini–Darmon–Iovita–Spieß in [Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting, Amer. J. Math. 124 (2002), 411–449]. In the case of p being inert in K, this analytic function of a p-adic variable s vanishes in the critical range s=1,…,k−1 , and one may be interested in the values of its derivative in this range. We construct, for k≥4 , a Chow motive endowed with a distinguished collection of algebraic cycles which encode these values, via the p-adic Abel–Jacobi map. Our main result generalizes the result obtained by Iovita and Spieß in [Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), 333–384], which gives a similar formula for the central value s=k/2 . Even in this case our construction is different from the one found by Iovita and Spieß.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[BD96]Bertolini, M. and Darmon, H., Heegner points on Mumford–Tate curves, Invent. Math. 126 (1996), 413456.CrossRefGoogle Scholar
[BD98]Bertolini, M. and Darmon, H., Heegner points, p-adic L-functions, and the Cerednik–Drinfeld uniformization, Invent. Math. 131 (1998), 453491; MR 1614543(99f:11080).CrossRefGoogle Scholar
[BD99]Bertolini, M. and Darmon, H., p-adic periods, p-adic L-functions, and the p-adic uniformization of Shimura curves, Duke Math. J. 98 (1999), 305334; MR 1695201(2000f:11075).CrossRefGoogle Scholar
[BDIS02]Bertolini, M., Darmon, H., Iovita, A. and Spieß, M., Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting, Amer. J. Math. 124 (2002), 411449.CrossRefGoogle Scholar
[BDP09]Bertolini, M., Darmon, H. and Prasanna, K., Generalised Heegner cycles and p-adic Rankin L-series (2009), to appear.Google Scholar
[BK90]Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift: A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck (1990), 333.CrossRefGoogle Scholar
[BGR84]Bosch, S., Guntzer, U. and Remmert, R., Non-Archimedean analysis (Springer, New York, 1984).CrossRefGoogle Scholar
[BC91]Boutot, J.-F. and Carayol, H., Uniformisation p-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfel’d, Astérisque 7 (1991), 45158, Courbes modulaires et courbes de Shimura (Orsay, 1987/1988); MR 1141456(93c:11041)(1992).Google Scholar
[BC09]Brinon, O. and Conrad, B., p-adic Hodge theory, Lecture Notes (CMI Summer School, 2009), http://math.stanford.edu/∼conrad/papers/notes.pdf.Google Scholar
[Col82]Coleman, R. F., Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982), 171.CrossRefGoogle Scholar
[Col85]Coleman, R. F., Torsion points on curves and p-adic abelian integrals, Ann. of Math. (2) 121 (1985), 111168.CrossRefGoogle Scholar
[Col89]Coleman, R. F., Reciprocity laws on curves, Compositio Math. 72 (1989), 205235.Google Scholar
[CG89]Coleman, R. F. and Gross, B. H., p-adic heights on curves, in Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17 (Academic Press, Boston, MA, 1989), 7381.Google Scholar
[CI10]Coleman, R. F. and Iovita, A., Hidden structures on semi-stable curves, Asterisque 331 (2010), 179254.Google Scholar
[CF00]Colmez, P. and Fontaine, J.-M., Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 143.CrossRefGoogle Scholar
[Dar04]Darmon, H., Rational points on modular elliptic curves (American Mathematical Society, Providence, RI, 2004).Google Scholar
[DT08]Dasgupta, S. and Teitelbaum, J. T., The p-adic upper half plane, p-Adic Geometry: Lectures from the 2007 Arizona Winter School (2008).CrossRefGoogle Scholar
[DM91]Deninger, C. and Murre, J., Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201219; MR 1133323(92m:14055).Google Scholar
[dS88]de Shalit, E., A formula for the cup product on Mumford curves, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988), Université Bordeaux I, Talence, 1988, p. Exp. No. 47, 10; MR 993140(90k:14017).Google Scholar
[dS89]de Shalit, E., Eichler cohomology and periods of modular forms on p-adic Schottky groups, J. Reine Angew. Math. 400 (1989), 331; MR 1013723(90j:11042).Google Scholar
[dS06]de Shalit, E., Coleman integration versus Schneider integration on semistable curves, Doc. Math. (2006), Extra Vol., 325–334 (electronic); MR 2290592(2007m:14022).Google Scholar
[Fon94]Fontaine, J.-M., Le corps des periodes p-adiques. Periodes p-adiques (Bures-sur-Yvette, 1988), Asterisque 223 (1994), 59111.Google Scholar
[FV04]Fresnel, J. and Van Der Put, M., Rigid analytic geometry and its applications (Birkhauser, 2004).CrossRefGoogle Scholar
[GS93]Greenberg, R. and Stevens, G., p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993), 407447.CrossRefGoogle Scholar
[IS03]Iovita, A. and Spieß, M., Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), 333384.CrossRefGoogle Scholar
[K\protect ün94]Künnemann, K., On the Chow motive of an abelian scheme, in Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics, vol. 55 (American Mathematical Society, Providence, RI, 1994), 189205; MR 1265530(95d:14009).Google Scholar
[Mas11]Masdeu, M., CM cycles on Shimura curves, and p-adic L-functions, Preprint (2011), arXiv:1110.6465v1 [math.NT].Google Scholar
[MS74]Mazur, B. and Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math. 25 (1974), 161.CrossRefGoogle Scholar
[MTT86]Mazur, B., Tate, J. and Teitelbaum, J. T., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 148.CrossRefGoogle Scholar
[Mil80]Milne, J. S., Étale cohomology (Princeton University Press, 1980).Google Scholar
[Nek92]Nekovář, J., Kolyvagin’s method for Chow groups of Kuga–Sato varieties, Invent. Math. 107 (1992), 99125.CrossRefGoogle Scholar
[Nek93]Nekovář, J., On p-adic height pairings, in Séminaire de Théorie des Nombres, Paris, 1990–91, Progress in Mathematics, vol. 108 (Birkhäuser, Boston, MA, 1993), 127202.CrossRefGoogle Scholar
[Nek95]Nekovář, J., On the p-adic height of Heegner cycles, Math. Ann. 302 (1995), 609686.CrossRefGoogle Scholar
[Nek00]Nekovář, J., p-adic Abel–Jacobi maps and p-adic heights, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), CRM Proceedings Lecture Notes, vol. 24 (American Mathematical Society, Providence, RI, 2000), 367379.Google Scholar
[Rio92]Perrin-Riou, B., Théorie d’Iwasawa et hauteurs p-adiques, Invent. Math. 109 (1992), 137185.CrossRefGoogle Scholar
[Sch84]Schneider, P., Rigid-analytic L-transforms, in Number theory, Noordwijkerhout 1983, Lecture Notes in Mathematics, vol. 1068 (Springer, Berlin, 1984), 216230.CrossRefGoogle Scholar
[Shi94]Shimura, G., Introduction to the arithmetic theory of automorphic functions (Princeton University Press, 1994).Google Scholar
[Tei90]Teitelbaum, J. T., Values of p-adic L-functions and a p-adic Poisson kernel, Invent. Math. 101 (1990), 395410.CrossRefGoogle Scholar