Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T20:06:23.789Z Has data issue: false hasContentIssue false

Cluster structures for 2-Calabi–Yau categories and unipotent groups

Published online by Cambridge University Press:  01 July 2009

A. B. Buan
Affiliation:
Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway (email: [email protected])
O. Iyama
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa-ku, 464-8602 Nagoya, Japan (email: [email protected])
I. Reiten
Affiliation:
Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway (email: [email protected])
J. Scott
Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate cluster-tilting objects (and subcategories) in triangulated 2-Calabi–Yau and related categories. In particular, we construct a new class of such categories related to preprojective algebras of non-Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi–Yau categories contains, as special cases, the cluster categories and the stable categories of preprojective algebras of Dynkin graphs. For these 2-Calabi–Yau categories, we construct cluster-tilting objects associated with each reduced expression. The associated quiver is described in terms of the reduced expression. Motivated by the theory of cluster algebras, we formulate the notions of (weak) cluster structure and substructure, and give several illustrations of these concepts. We discuss connections with cluster algebras and subcluster algebras related to unipotent groups, in both the Dynkin and non-Dynkin cases.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Angeleri Hügel, L., Happel, D. and Krause, H., Handbook of tilting theory, London Mathematical Society Lecture Note Series, vol. 332 (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
[2]Assem, I., Brüstle, T. and Schiffler, R., Cluster-tilted algebras as trivial extensions, Bull. London Math. Soc. 40 (2008), 151162.CrossRefGoogle Scholar
[3]Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. 1: Techniques of representation theory, London Mathematical Society Student Texts, vol. 65 (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
[4]Auslander, M., Coherent functors, in Proceedings of the conference on categorical algebra (La Jolla, CA, 1965) (Springer, Berlin, 1966), 189231.CrossRefGoogle Scholar
[5]Auslander, M., Applications of morphisms determined by modules, in Proceedings of the conference on representation theory of algebras (Temple Univ., Philadelphia, 1976), Lecture Notes in Pure and Applied Mathematics, vol. 37 (Dekker, New York, 1978), 245327.Google Scholar
[6]Auslander, M. and Reiten, I., Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111152.CrossRefGoogle Scholar
[7]Auslander, M. and Reiten, I., DTr-periodic modules and functors, in Representation theory of algebras (Cocoyoc, 1994), CMS Conference Proceedings, vol. 18 (American Mathematical Society, Providence, RI, 1996), 3950.Google Scholar
[8]Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36 (Cambridge University Press, Cambridge, 1997).Google Scholar
[9]Auslander, M. and Smalø, S. O., Preprojective modules over Artin algebras, J. Algebra 66 (1980), 61122.CrossRefGoogle Scholar
[10]Baer, D., Geigle, W. and Lenzing, H., The preprojective algebra of a tame hereditary Artin algebra, Comm. Algebra 15 (1987), 425457.CrossRefGoogle Scholar
[11]Berenstein, A., Fomin, S. and Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 152.CrossRefGoogle Scholar
[12]Berenstein, A. and Zelevinsky, A., Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128166.CrossRefGoogle Scholar
[13]Billey, S. and Lakshmibai, V., Singular loci of Schubert varieties, Progress in Mathematics, vol. 182 (Birkhäuser, Boston, MA, 2000).CrossRefGoogle Scholar
[14]Björner, A. and Brenti, F., Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231 (Springer, New York, 2005).Google Scholar
[15]Bocklandt, R., Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008), 1432.CrossRefGoogle Scholar
[16]Brenner, S., Butler, M. and King, A., Periodic algebras which are almost Koszul, Algebr. Represent. Theory 5 (2002), 331367.CrossRefGoogle Scholar
[17]Buan, A. and Marsh, R., Cluster-tilting theory, in Trends in representation theory of algebras and related topics (Queretaro, Mexico, 11–14 August 2004), Contemporary Mathematics, vol. 406 (American Mathematical Society, Providence, RI, 2006), 130.Google Scholar
[18]Buan, A., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572618.CrossRefGoogle Scholar
[19]Buan, A., Marsh, R. and Reiten, I., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323332.CrossRefGoogle Scholar
[20]Buan, A., Marsh, R. and Reiten, I., Cluster mutation via quiver representations, Comm. Math. Helv 83 (2008), 143177.CrossRefGoogle Scholar
[21]Buan, A., Marsh, R., Reiten, I. and Todorov, G., Clusters and seeds for acyclic cluster algebras; with an appendix by Buan A., Caldero P., Keller B., Marsh R., Reiten I. and Todorov G., Proc. Amer. Math. Soc. 135 (2007), 30493060.Google Scholar
[22]Buan, A. and Reiten, I., Acyclic quivers of finite mutation type, Int. Math. Res. Not. (2006), 110.Google Scholar
[23]Burban, I., Iyama, O., Keller, B. and Reiten, I., Cluster tilting for one-dimensional hypersurface singularities, Adv. Math. 217 (2008), 24432484.CrossRefGoogle Scholar
[24]Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595616.CrossRefGoogle Scholar
[25]Caldero, P., Chapoton, F. and Schiffler, R., Quivers with relations arising from clusters (A n case), Trans. Amer. Math. Soc. 358 (2006), 13471364.CrossRefGoogle Scholar
[26]Caldero, P. and Keller, B., From triangulated categories to cluster algebras II, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006), 9831009.CrossRefGoogle Scholar
[27]Caldero, P. and Keller, B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169211.CrossRefGoogle Scholar
[28]Cartan, H. and Eilenberg, S., Homological algebra (Princeton University Press, Princeton, NJ, 1956).Google Scholar
[29]Crawley-Boevey, W., On the exceptional fibres of Kleinian singularities, Amer. J. Math. 122 (2000), 10271037.CrossRefGoogle Scholar
[30]Erdmann, K. and Holm, T., Maximal n-orthogonal modules for selfinjective algebras, Proc. Amer. Math. Soc. 136 (2008), 30693078.CrossRefGoogle Scholar
[31]Fomin, S. and Zelevinsky, A., Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335380.CrossRefGoogle Scholar
[32]Fomin, S. and Zelevinsky, A., Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497529.CrossRefGoogle Scholar
[33]Fomin, S. and Zelevinsky, A., Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63121.CrossRefGoogle Scholar
[34]Fomin, S. and Zelevinsky, A., Cluster algebras IV: Coefficients, Compositio Math. 143 (2007), 112164.CrossRefGoogle Scholar
[35]Fu, C. and Keller, B., On cluster algebras with coefficients and 2-Calabi-Yau categories, Preprint (2007), arXiv:0710.3152, Trans. Amer. Math. Soc., to appear.Google Scholar
[36]Geiss, C., Leclerc, B. and Schröer, J., Semicanonical bases and preprojective algebras, Ann. Sci. Ecole Norm. Sup. (4) 38 (2005), 193253.CrossRefGoogle Scholar
[37]Geiss, C., Leclerc, B. and Schröer, J., Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589632.CrossRefGoogle Scholar
[38]Geiss, C., Leclerc, B. and Schröer, J., Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc. (2) 75 (2007), 718740.CrossRefGoogle Scholar
[39]Geiss, C., Leclerc, B. and Schröer, J., Semicanonical bases and preprojective algebras II: A multiplication formula, Compositio Math. 143 (2007), 13131334.CrossRefGoogle Scholar
[40]Geiss, C., Leclerc, B. and Schröer, J., Cluster algebra structures and semicanonical bases for unipotent groups, Preprint (2007), arxiv:math.RT/0703039.Google Scholar
[41]Geiss, C., Leclerc, B. and Schröer, J., Partial flag varieties and preprojective algebras, Ann. Inst. Fourier 58 (2008), 825876.CrossRefGoogle Scholar
[42]Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119 (Cambridge University Press, Cambridge, 1988).CrossRefGoogle Scholar
[43]Happel, D., On Gorenstein algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progress in Mathematics, vol. 95 (Birkhäuser, Basel, 1991), 389404.CrossRefGoogle Scholar
[44]Happel, D. and Unger, L., On a partial order of tilting modules, Algebr. Represent. Theory 8 (2005), 147156.CrossRefGoogle Scholar
[45]Hubery, A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint. Available from www.maths.leeds.ac.uk/∼ahubery.Google Scholar
[46]Igusa, K., Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), 161176.CrossRefGoogle Scholar
[47]Ingalls, C. and Thomas, H., Noncrossing partitions and representations of quivers, Preprint (2006), arxiv:math.RT/0612219, Compositio Math., to appear.Google Scholar
[48]Iyama, O., Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), 2250.CrossRefGoogle Scholar
[49]Iyama, O., Auslander correspondence, Adv. Math. 210 (2007), 5182.CrossRefGoogle Scholar
[50]Iyama, O., d-CalabiYau algebras and d-cluster-tilting subcategories, Preprint. Available from www.math.nagoya-u.ac.jp/∼iyama/papers.html.Google Scholar
[51]Iyama, O. and Reiten, I., Fomin–Zelevinsky mutation and tilting modules over Calabi–Yau algebras, Amer. J. Math. 130 (2008), 10891149.CrossRefGoogle Scholar
[52]Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen–Macaulay modules, Invent. Math. 172 (2008), 117168.CrossRefGoogle Scholar
[53]Kac, V. G. and Peterson, D. H., Regular functions on certain infinite-dimensional groups, in Arithmetic and geometry, Progress in Mathematics, vol. 36 (Birkhäuser, Boston, 1983), 141166.CrossRefGoogle Scholar
[54]Kac, V. G. and Peterson, D. H., Defining relations of certain infinite-dimensional groups, in Proceedings of the Cartan conference (Lyon, 1984), Astérisque, numero hors serie (Société Mathématique de France, Paris, 1985), 165208.Google Scholar
[55]Keller, B., Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379417.CrossRefGoogle Scholar
[56]Keller, B., Derived categories and their uses, in Handbook of algebra, vol. 1 (North-Holland, Amsterdam, 1996), 671701.CrossRefGoogle Scholar
[57]Keller, B., On triangulated orbit categories, Documenta Math. 10 (2005), 551581.CrossRefGoogle Scholar
[58]Keller, B., Calabi–Yau triangulated categories, in Trends in representation theory of algebras and related topics, EMS series of Congress Reports (European Mathematical Society, 2008), 467490.CrossRefGoogle Scholar
[59]Keller, B. and Reiten, I., Acyclic Calabi–Yau categories, Compositio Math. 144 (2008), 13321348.CrossRefGoogle Scholar
[60]Keller, B. and Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (2007), 123151.CrossRefGoogle Scholar
[61]König, S. and Zhu, B., From triangulated categories to abelian categories—cluster tilting in a general framework, Math. Z 258 (2008), 143160.CrossRefGoogle Scholar
[62]Lenzing, H., Nilpotente Elemente in Ringen von endlicher globaler Dimension, Math. Z. 108 (1969), 313324.CrossRefGoogle Scholar
[63]Lusztig, G., Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365421.CrossRefGoogle Scholar
[64]Lusztig, G., Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129139.CrossRefGoogle Scholar
[65]Marsh, R., Reineke, M. and Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 41714186.CrossRefGoogle Scholar
[66]Palu, Y., Grothendieck group and generalized mutation rule for 2-Calabi–Yau triangulated categories, J. Pure Appl. Algebra 213 (2008), 14381449.CrossRefGoogle Scholar
[67]Pressley, A. and Segal, G., Loop groups, Oxford Mathematical Monographs (Oxford University Press, New York, 1986).Google Scholar
[68]Reiten, I. and van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295366.CrossRefGoogle Scholar
[69]Rickard, J., Morita theory for derived categories, J. London Math. Soc. (2) 29 (1989), 436456.CrossRefGoogle Scholar
[70]Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099 (Springer, Berlin, 1984).CrossRefGoogle Scholar
[71]Ringel, C. M., Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future, in Handbook of tilting theory, London Mathematical Society Lecture Note Series, vol. 332 (Cambridge University Press, Cambridge, 2007), 413469.CrossRefGoogle Scholar
[72]Scott, J., Block-Toeplitz determinants, chess tableaux, and the type   GeissLeclercSchröer φ-map, Preprint (2007), arXiv:0707.3046.Google Scholar
[73]Smalö, S. O., Torsion theories and tilting modules, Bull. London Math. Soc. 16 (1984), 518522.CrossRefGoogle Scholar
[74]Tabuada, G., On the structure of Calabi–Yau categories with a cluster tilting subcategory, Documenta Math. 12 (2007), 193213.CrossRefGoogle Scholar
[75]Yekutieli, A., Dualizing complexes, Morita equivalence and the derived Picard group of a ring, J. London Math. Soc. (2) 60 (1999), 723746.CrossRefGoogle Scholar
[76]Yoshino, Y., Cohen–Macaulay modules over Cohen–Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar