Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T15:22:57.388Z Has data issue: false hasContentIssue false

Birational invariance in logarithmic Gromov–Witten theory

Published online by Cambridge University Press:  29 January 2018

Dan Abramovich
Affiliation:
Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, USA email [email protected]
Jonathan Wise
Affiliation:
University of Colorado, Boulder, CO 80309-0395, USA email [email protected]

Abstract

Gromov–Witten invariants have been constructed to be deformation invariant, but their behavior under other transformations is subtle. We show that logarithmic Gromov–Witten invariants are also invariant under appropriately defined logarithmic modifications.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, D., Cadman, C., Fantechi, B. and Wise, J., Expanded degenerations and pairs , Comm. Algebra 41 (2013), 23462386; MR 3225278.Google Scholar
Abramovich, D. and Chen, Q., Stable logarithmic maps to Deligne–Faltings pairs II , Asian J. Math. 18 (2014), 465488; MR 3257836.CrossRefGoogle Scholar
Abramovich, D., Chen, Q., Gillam, D., Huang, Y., Olsson, M., Satriano, M. and Sun, S., Logarithmic geometry and moduli , in Handbook of moduli, Vol. I, Advanced Lectures in Mathematics, vol. 24 (International Press, Somerville, MA, 2013), 161; MR 3184161.Google Scholar
Abramovich, D., Chen, Q., Marcus, S., Ulirsch, M. and Wise, J., Skeletons and fans of logarithmic structures , in Nonarchimedean and tropical geometry, Simons Symposia, eds Baker, M. and Payne, S. (Springer, Cham, 2016).Google Scholar
Abramovich, D., Chen, Q., Marcus, S. and Wise, J., Boundedness of the space of stable logarithmic maps , J. Eur. Math. Soc. (JEMS) 19 (2017), 27832809; MR 3692887.CrossRefGoogle Scholar
Abramovich, D. and Karu, K., Weak semistable reduction in characteristic 0 , Invent. Math. 139 (2000), 241273; MR 1738451 (2001f:14021).Google Scholar
Abramovich, D., Marcus, S. and Wise, J., Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations , Ann. Inst. Fourier (Grenoble) 64 (2014), 16111667; MR 3329675.Google Scholar
Chen, Q., Stable logarithmic maps to Deligne–Faltings pairs I , Ann. of Math. (2) 180 (2014), 455521; MR 3224717.Google Scholar
Costello, K., Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products , Ann. of Math. (2) 164 (2006), 561601.CrossRefGoogle Scholar
Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, vol. 131: The William H. Roever Lectures in Geometry (Princeton University Press, Princeton, NJ, 1993); MR 1234037.CrossRefGoogle Scholar
Gathmann, A., Gromov–Witten invariants of blow-ups , J. Algebraic Geom. 10 (2001), 399432; MR 1832328 (2002b:14069).Google Scholar
Gross, M. and Siebert, B., Logarithmic Gromov–Witten invariants , J. Amer. Math. Soc. 26 (2013), 451510; MR 3011419.CrossRefGoogle Scholar
Hu, J., Gromov–Witten invariants of blow-ups along points and curves , Math. Z. 233 (2000), 709739; MR 1759269 (2001c:53115).Google Scholar
Hu, J., Li, T.-J. and Ruan, Y., Birational cobordism invariance of uniruled symplectic manifolds , Invent. Math. 172 (2008), 231275; MR 2390285 (2009f:53138).Google Scholar
Kato, K., Logarithmic structures of Fontaine–Illusie , in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (Johns Hopkins University Press, Baltimore, MD, 1989), 191224; MR 1463703 (99b:14020).Google Scholar
Kato, F., Exactness, integrality, and log modifications, Preprint (1999), arXiv:math/9907124.Google Scholar
Kempf, G., Knudsen, F. F., Mumford, D. and Saint-Donat, B., Toroidal embeddings. I, Lecture Notes in Mathematics, vol. 339 (Springer, Berlin, 1973); MR 0335518 (49 #299).CrossRefGoogle Scholar
Lai, H.-H., Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles , Geom. Topol. 13 (2009), 148; MR 2469512 (2010m:14073).Google Scholar
Laumon, G. and Moret-Bailly, L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39 (Springer, Berlin, 2000); MR 1771927 (2001f:14006).Google Scholar
Manolache, C., Virtual pull-backs , J. Algebraic Geom. 21 (2012), 201245; MR 2877433 (2012m:14010).Google Scholar
Maulik, D. and Pandharipande, R., A topological view of Gromov–Witten theory , Topology 45 (2006), 887918; MR 2248516 (2007e:14092).Google Scholar
Milne, J. S., Étale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980); MR 559531 (81j:14002).Google Scholar
Ogus, A., Lectures on logarithmic algebraic geometry (Cambridge University Press, 2017), to appear. Preprint, https://math.berkeley.edu/∼ogus/preprints/loggeometrydone.pdf.Google Scholar
Olsson, M. C., Logarithmic geometry and algebraic stacks , Ann. Sci. Éc. Norm. Supér. (4) 36 (2003), 747791.Google Scholar
Olsson, M. C., (Log) twisted curves , Compos. Math. 143 (2007), 476494; MR 2309994 (2008d:14021).Google Scholar
Ranganathan, D., Superabundant curves and the Artin fan , Int. Math. Res. Not. IMRN 2017 (2017), 11031115.Google Scholar
Ranganathan, D., Skeletons of stable maps I: Rational curves in toric varieties , J. Lond. Math. Soc. (2) 95 (2017), 804832; MR 3664519.Google Scholar
Artin, M., Grothendieck, A. and Verdier, J. L. (eds), Théorie des topos et cohomologie étale des schémas , inSéminaire de Géométrie Algébrique du Bois-Marie 1963–64 (SGA 4), Vol. 1, Lecture Notes in Mathematics, vol. 269 (Springer, Berlin, 1972), Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat; MR 0354652.Google Scholar
Ulirsch, M., Tropical geometry of logarithmic schemes, PhD thesis, Brown University (2015).Google Scholar
Ulirsch, M., Functorial tropicalization of logarithmic schemes: the case of constant coefficients , Proc. Lond. Math. Soc. (3) 114 (2017), 10811113.Google Scholar
Wise, J., Obstruction theories and virtual fundamental classes, Preprint (2011), arXiv:1111.4200.Google Scholar
Wise, J., Moduli of morphisms of logarithmic schemes , Algebra Number Theory 10 (2016), 695735; MR 3519093.CrossRefGoogle Scholar