Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T06:02:36.112Z Has data issue: false hasContentIssue false

The Balmer spectrum of certain Deligne–Mumford stacks

Published online by Cambridge University Press:  24 May 2023

Eike Lau*
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany [email protected]

Abstract

We consider a Deligne–Mumford stack $X$ which is the quotient of an affine scheme $\operatorname {Spec}A$ by the action of a finite group $G$ and show that the Balmer spectrum of the tensor triangulated category of perfect complexes on $X$ is homeomorphic to the space of homogeneous prime ideals in the group cohomology ring $H^*(G,A)$.

Type
Research Article
Copyright
© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atiyah, M. and Macdonald, I., Commutative algebra (Addison-Wesley, 1969).Google Scholar
Balmer, P., The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005), 149168.10.1515/crll.2005.2005.588.149CrossRefGoogle Scholar
Balmer, P., Spectra, spectra, spectra–tensor triangular spectra versus Zariski spectra of endomorphism rings, Algebr. Geom. Topol. 10 (2010), 15211563.10.2140/agt.2010.10.1521CrossRefGoogle Scholar
Balmer, P., On the surjectivity of the map of spectra associated to a tensor-triangulated functor, Bull. London Math. Soc. 50 (2018), 487495.10.1112/blms.12158CrossRefGoogle Scholar
Balmer, P., A guide to tensor triangular classification, in Handbook of homotopy theory (Chapman and Hall/CRC Press, 2019), chapter 4.10.1201/9781351251624-4CrossRefGoogle Scholar
Barthel, T., Stratifying integral representations of finite groups, Preprint (2021), arXiv:2109.08135.Google Scholar
Barthel, T., Stratifying integral representations via equivariant homotopy theory, Preprint (2022), arXiv:2203.14946.Google Scholar
Benson, D., Carlson, J. and Rickard, J., Thick subcategories of the stable module category, Fund. Math. 153 (1997), 5980.10.4064/fm-153-1-59-80CrossRefGoogle Scholar
Benson, D., Iyengar, S. and Krause, H., Stratifying modular representations of finite groups, Ann. of Math. (2) 174 (2011), 16431684.10.4007/annals.2011.174.3.6CrossRefGoogle Scholar
Benson, D., Iyengar, S. and Krause, H., Module categories for group algebras over commutative rings, J. K-Theory 11 (2013), 297329.10.1017/is013001031jkt214CrossRefGoogle Scholar
Benson, D., Iyengar, S., Krause, H. and Pevtsova, J., Stratification for module categories of finite group schemes, J. Amer. Math. Soc. 31 (2018), 265302.10.1090/jams/887CrossRefGoogle Scholar
Benson, D., Iyengar, S., Krause, H. and Pevtsova, J., Fibrewise stratification of group representations, Preprint (2022), arXiv:2204.10431.Google Scholar
Bourbaki, N., Algèbre commutative, Chapitres 5 à 7 (Mason, 1975).Google Scholar
Brown, K., Cohomology of groups (Springer, 1982).10.1007/978-1-4684-9327-6CrossRefGoogle Scholar
Buan, A., Krause, H. and Solberg, Ø., Support varieties: an ideal approach, Homology Homotopy Appl. 9 (2007), 4574.10.4310/HHA.2007.v9.n1.a2CrossRefGoogle Scholar
Carlson, J. and Iyengar, S., Thick subcategories of the bounded derived category of a finite group, Trans. Amer. Math. Soc. 367 (2015), 27032717.10.1090/S0002-9947-2014-06121-7CrossRefGoogle Scholar
Dell'Ambrogio, I. and Stanley, D., Affine weakly regular tensor triangulated categories, Pacific J. Math. 285 (2016), 93109.10.2140/pjm.2016.285.93CrossRefGoogle Scholar
Dell'Ambrogio, I. and Stanley, D., Affine weakly regular tensor triangulated categories, Erratum, available at http://math.univ-lille1.fr/~dellambr/affreg_erratum.pdf.Google Scholar
Evens, L., The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224224.10.1090/S0002-9947-1961-0137742-1CrossRefGoogle Scholar
Görtz, U. and Wedhorn, T., Algebraic geoemetry 1 (Springer, 2020).Google Scholar
Grothendieck, A. and Dieudonné, J., Eléments de géométrie algébrique IV, quatrième partie, Publ. Math. Inst. Hautes Études Sci. 32 (1967).Google Scholar
Hall, J., The Balmer spectrum of a tame stack, Ann. K-Theory 1 (2016), 259274.10.2140/akt.2016.1.259CrossRefGoogle Scholar
Hall, J., Nemman, A. and Rydh, D., One positive and two negative results for derived categories of algebraic stacks, J. Inst. Math. Jussieu 18 (2019), 10871111.10.1017/S1474748017000366CrossRefGoogle Scholar
Hall, J. and Rydh, D., Perfect complexes on algebraic stacks, Compos. Math. 153 (2017), 23182367.10.1112/S0010437X17007394CrossRefGoogle Scholar
Happel, D., Triangulated categories in the representation theory of finite dimensional algebras (Cambridge University Press, 1988).10.1017/CBO9780511629228CrossRefGoogle Scholar
Hatcher, A., Algebraic topology (Cambridge University Press, 2002).Google Scholar
Laumon, G. and Moret-Bailly, L., Champs algébriques (Springer, 2000).10.1007/978-3-540-24899-6CrossRefGoogle Scholar
Matsumura, H., Commutative ring theory (Cambridge University Press, 1980).Google Scholar
Rickard, J., Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303317.10.1016/0022-4049(89)90081-9CrossRefGoogle Scholar
Grothendieck, A. and Raynaud, M., Revêtements Étales et Groupe Fondamental, Séminaire de Géométrie Algébrique du Bois Marie 1960/61 (SGA 1), Lecture Notes in Mathematics, vol. 224 (Springer, 1971).Google Scholar
Berthelot, P., Grothendieck, A. and Illusie, L. (eds), Séminaire de géométrie algébrique du Bois-Marie 1966–1967 – Thórie des intersections et théorème de Riemann-Roch – (SGA 6), Lecture Notes in Mathematics, vol. 225 (Springer, Berlin, 1971).Google Scholar
The Stacks Project Authors, The Stacks project (2020), https://stacks.math.columbia.edu.Google Scholar
Thomason, R., The classification of triangulated subcategories, Compos. Math. 105 (1997), 127.10.1023/A:1017932514274CrossRefGoogle Scholar
Weibel, C., Introduction to homological algebra (Cambridge University Press, 2003).Google Scholar
Zheng, W., Six operations and Lefschetz–Verdier formula for Deligne–Mumford stacks, Sci. China Math. 58 (2015), 565632.10.1007/s11425-015-4970-zCrossRefGoogle Scholar