Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:54:55.321Z Has data issue: false hasContentIssue false

Arithmetic intersection on GSpin Rapoport–Zink spaces

Published online by Cambridge University Press:  16 May 2018

Chao Li
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA email [email protected]
Yihang Zhu
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA email [email protected]

Abstract

We prove an explicit formula for the arithmetic intersection number of diagonal cycles on GSpin Rapoport–Zink spaces in the minuscule case. This is a local problem arising from the arithmetic Gan–Gross–Prasad conjecture for orthogonal Shimura varieties. Our formula can be viewed as an orthogonal counterpart of the arithmetic–geometric side of the arithmetic fundamental lemma proved by Rapoport–Terstiege–Zhang in the minuscule case.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bueltel, O. and Pappas, G., $(G,\unicode[STIX]{x1D707})$ -displays and Rapoport–Zink spaces, Preprint (2017),arXiv:1702.00291.Google Scholar
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields , Ann. of Math. (2) 103 (1976), 103161.CrossRefGoogle Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups , Astérisque 346 (2012), 1109; sur les conjectures de Gross et Prasad. I.Google Scholar
Gross, B. H. and Kudla, S. S., Heights and the central critical values of triple product L-functions , Compos. Math. 81 (1992), 143209.Google Scholar
Gross, B. H. and Schoen, C., The modified diagonal cycle on the triple product of a pointed curve , Ann. Inst. Fourier (Grenoble) 45 (1995), 649679.Google Scholar
Gross, B. H. and Zagier, D. B., Heegner points and derivatives of L-series , Invent. Math. 84 (1986), 225320.CrossRefGoogle Scholar
Harris, J., Algebraic geometry. A first course, Graduate Texts in Mathematics, vol. 33 (Springer, New York, 1995); corrected reprint of the 1992 original.Google Scholar
Howard, B. and Pappas, G., On the supersingular locus of the GU(2, 2) Shimura variety , Algebra Number Theory 8 (2014), 16591699.Google Scholar
Howard, B. and Pappas, G., Rapoport–Zink spaces for spinor groups , Compos. Math. 153 (2017), 10501118.Google Scholar
Iversen, B., A fixed point formula for action of tori on algebraic varieties , Invent. Math. 16 (1972), 229236.Google Scholar
Kim, W., Rapoport–Zink spaces of Hodge type, Preprint (2013), arXiv:1308.5537.Google Scholar
Kisin, M., Integral models for Shimura varieties of abelian type , J. Amer. Math. Soc. 23 (2010), 9671012.Google Scholar
Krishna, R. M., Relative trace formula for SO2 $\times$ SO3 and the Waldspurger formula, ProQuest LLC, Ann Arbor, MI, PhD thesis, Columbia University (2016).Google Scholar
Li, C. and Zhu, Y., Remarks on the arithmetic fundamental lemma , Algebra Number Theory 11 (2017), 24252445.Google Scholar
Lusztig, G., Coxeter orbits and eigenspaces of Frobenius , Invent. Math. 38 (1976–1977), 101159.CrossRefGoogle Scholar
Lusztig, G., From conjugacy classes in the Weyl group to unipotent classes , Represent. Theory 15 (2011), 494530.CrossRefGoogle Scholar
Madapusi Pera, K., Integral canonical models for spin Shimura varieties , Compos. Math. 152 (2016), 769824.Google Scholar
Rapoport, M., Terstiege, U. and Zhang, W., On the arithmetic fundamental lemma in the minuscule case , Compos. Math. 149 (2013), 16311666.Google Scholar
Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Yuan, X., Zhang, S.-W. and Zhang, W., Triple product L-series and Gross–Kudla–Schoen cycles, Preprint (2012), https://www.math.columbia.edu/∼wzhang/math/online/triple.pdf.Google Scholar
Yuan, X., Zhang, S.-W. and Zhang, W., The Gross–Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184 (Princeton University Press, Princeton, NJ, 2013).Google Scholar
Zhang, W., On arithmetic fundamental lemmas , Invent. Math. 188 (2012), 197252.Google Scholar