Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:53:57.308Z Has data issue: false hasContentIssue false

Représentations linéaires des groupes kählériens : factorisations et conjecture de Shafarevich linéaire

Published online by Cambridge University Press:  26 November 2014

Fréderic Campana
Affiliation:
Université de Lorraine, Institut Élie Cartan Nancy, UMR 7502, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France email [email protected]
Benoît Claudon
Affiliation:
Université de Lorraine, Institut Élie Cartan Nancy, UMR 7502, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France email [email protected]
Philippe Eyssidieux
Affiliation:
Institut Fourier, Université Grenoble 1, 38402 Saint-Martin d’Hères Cedex, France email [email protected]

Abstract

We extend to compact Kähler manifolds some classical results on linear representation of fundamental groups of complex projective manifolds. Our approach, based on an interversion lemma for fibrations with tori versus general type manifolds as fibers, gives a refinement of the classical work of Zuo. We extend to the Kähler case some general results on holomorphic convexity of coverings such as the linear Shafarevich conjecture.

Résumé

Nous étendons aux variétés kählériennes compactes quelques résultats classiques sur les représentations linéaires des groupes fondamentaux des variétés projectives lisses. Notre approche, basée sur une interversion de fibrations à fibres tores vs variétés de type général, fournit une alternative à celle de [K. Zuo, Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of${\it\pi}_{1}$of compact Kähler manifolds, J. Reine Angew. Math. 472 (1996), 139–156]. Enfin nous étendons au cas kählérien les résultats généraux de convexité holomorphe pour les revêtements associés connus dans le cas projectif.

Type
Research Article
Copyright
© The Author(s) 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorós, J., Burger, M., Corlette, K., Kotschick, D. and Toledo, D., Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, vol. 44 (American Mathematical Society, Providence, RI, 1996).Google Scholar
Brunebarbe, Y., Klingler, B. and Totaro, B., Symmetric differentials and the fundamental group, Duke Math. J. 162 (2013), 27972813.CrossRefGoogle Scholar
Campana, F., Réduction d’Albanese d’un morphisme propre et faiblement kählérien. I et II, Compositio Math. 54 (1985), 373416.Google Scholar
Campana, F., Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994), 255284.Google Scholar
Campana, F., Remarques sur les groupes de Kähler nilpotents, Ann. Sci. Éc. Norm. Supér. (4) 28 (1995), 307316.Google Scholar
Campana, F., Connexité abélienne des variétés kählériennes compactes, Bull. Soc. Math. France 126 (1998), 483506.Google Scholar
Campana, F., Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom. 10 (2001), 599622.Google Scholar
Campana, F., Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), 499630.Google Scholar
Campana, F., Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011), 809934.Google Scholar
Campana, F., Quotients résolubles ou nilpotents des groupes de Kähler orbifoldes, Manuscripta Math. 135 (2011), 117150.Google Scholar
Campana, F., Claudon, B. and Eyssidieux, P., Représentations linéaires de groupes kählériens et de leurs analogues projectifs, Preprint (2014), arXiv:1403.3013.Google Scholar
Claudon, B., Convexité holomorphe du revêtement de Malčev d’après S. Leroy, Preprint (2008), arXiv:0809.0920.Google Scholar
Corlette, K., Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. (1971), 557.Google Scholar
Corlette, K., Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361382.Google Scholar
Corlette, K., Non abelian Hodge theory, Proc. Sympos. Pure Math. 54 (1993), 125140.Google Scholar
Delzant, T., L’invariant de Bieri-Neumann-Strebel des groupes fondamentaux des variétés kählériennes, Math. Ann. 348 (2010), 119125.Google Scholar
Eyssidieux, P., Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math. 156 (2004), 503564.CrossRefGoogle Scholar
Eyssidieux, P., Lectures on the Shafarevich conjecture on uniformization, Variétés complexes, feuilletages, uniformisation, Panoramas et Synthèses, vol. 34/35, (2011), 101148; SMF.Google Scholar
Eyssidieux, P., On the uniformization of compact Kähler orbifolds, Vietnam J. Math. 41 (2013), 399407.Google Scholar
Eyssidieux, P., Katzarkov, L., Pantev, T. and Ramachandran, M., Linear Shafarevich conjecture, Ann. of Math. (2) 176 (2012), 15451581.Google Scholar
Gromov, M., Kähler hyperbolicity and L 2-Hodge theory, J. Differential Geom. 33 (1991), 263292.CrossRefGoogle Scholar
Gromov, M. and Schoen, R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. Inst. Hautes Études Sci. (1992), 165246.Google Scholar
Hain, R. M., The geometry of the mixed Hodge structure on the fundamental group, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics vol. 46 (American Mathematical Society, Providence, RI, 1987), 247282.Google Scholar
Hain, R. M., The de Rham homotopy theory of complex algebraic varieties. I, K-Theory 1 (1987), 271324.Google Scholar
Hitchin, N., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. (3) 55 (1987), 59126.Google Scholar
Jost, J. and Zuo, K., Harmonic maps into Bruhat-Tits buildings and factorizations of p-adically unbounded and non rigid representations of 𝜋1of algebraic varieties, I, J. Algebraic Geom. 9 (2000), 142.Google Scholar
Katzarkov, L., Nilpotent groups and universal coverings of smooth projective varieties, J. Differential Geom. 45 (1997), 336348.Google Scholar
Katzarkov, L., On the Shafarevich maps, in Algebraic geometry—Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, vol. 62 (American Mathematical Society, Providence, RI, 1997), 173216.Google Scholar
Katzarkov, L. and Ramachandran, M., On the universal coverings of algebraic surfaces, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 525535.Google Scholar
Kawamata, Y., Characterization of abelian varieties, Compositio Math. 43 (1981), 253276.Google Scholar
Kollár, J., Subadditivity of the Kodaira dimension: fibers of general type, in Algebraic geometry, Sendai, Advanced Studies in Pure Mathematics, vol. 10, (1985), 361398.Google Scholar
Kollár, J., Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177215.Google Scholar
Lasell, B. and Ramachandran, M., Observations on harmonic maps and singular varieties, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996), 135148.Google Scholar
Lubotzky, A. and Magid, A. R., Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985).Google Scholar
Nakayama, N., Compact Kähler manifolds whose universal covering spaces are biholomorphic to $\mathbb{C}^{n}$, RIMS Preprint (1999), no. 1230.Google Scholar
Simpson, C. T., Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 595.Google Scholar
Simpson, C. T., Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), 361401.Google Scholar
Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. Inst. Hautes Études Sci. 79 (1994), 47129.Google Scholar
Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math. Inst. Hautes Études Sci. 80 (1994), 579.Google Scholar
Ueno, K., Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, vol. 439 (Springer, 1975); notes written in collaboration with P. Cherenack.CrossRefGoogle Scholar
Viehweg, E., Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in Algebraic varieties and analytic varieties, Tokyo, Advanced Studies in Pure Mathematics, vol. 1 (Kinokuniya, Tokyo, 1983), 329353.Google Scholar
Zuo, K., Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of 𝜋1of compact Kähler manifolds, J. Reine Angew. Math. 472 (1996), 139156.Google Scholar
Zuo, K., Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, vol. 1708 (Springer, 1999).Google Scholar