Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:55:02.606Z Has data issue: false hasContentIssue false

Relative Calabi–Yau structures

Published online by Cambridge University Press:  12 February 2019

Christopher Brav
Affiliation:
National Research University Higher School of Economics, Russian Federation, Laboratory of Mirror Symmetry, NRU HSE, 6 Usacheva str., Moscow, 119048, Russia email [email protected]
Tobias Dyckerhoff
Affiliation:
Fachbereich Mathematik, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany email [email protected]

Abstract

We introduce relative noncommutative Calabi–Yau structures defined on functors of differential graded categories. Examples arise in various contexts such as topology, algebraic geometry, and representation theory. Our main result is a composition law for Calabi–Yau cospans generalizing the classical composition of cobordisms of oriented manifolds. As an application, we construct Calabi–Yau structures on topological Fukaya categories of framed punctured Riemann surfaces.

Type
Research Article
Copyright
© The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anno, R. and Logvinenko, T., Spherical DG-functors , J. Eur. Math. Soc. (JEMS) 19 (2017), 25772656.Google Scholar
Brav, C. and Dyckerhoff, T., Relative Calabi–Yau structures II: Shifted Lagrangians in the moduli of objects, Preprint (2018), arXiv:1812.11913.Google Scholar
Calaque, D., Lagrangian structures on mapping stacks and semi-classical TFTs , in Stacks and categories in geometry, topology, and algebra, Contemporary Mathematics, vol. 643 (American Mathematical Society, Providence, RI, 2015), 123.Google Scholar
Cohen, R. and Ganatra, S., Calabi–Yau categories, string topology, and Floer field theory, Preprint (2015), http://palmer.wellesley.edu/∼ivolic/pdf/DubrovnikConference/TalkSlides/Cohen.pdf.Google Scholar
Dyckerhoff, T. and Kapranov, M., Triangulated surfaces in triangulated categories , J. Eur. Math. Soc. (JEMS) 20 (2018), 14731524.Google Scholar
Dyckerhoff, T. and Kapranov, M., Crossed simplicial groups and structured surfaces , in Stacks and categories in geometry, topology, and algebra, Contemporary Mathematics, vol. 643 (American Mathematical Society, Providence, RI, 2015), 37110.Google Scholar
Dyckerhoff, T., A1 -homotopy invariants of topological Fukaya categories of surfaces , Compositio Math. 153 (2017), 16731705.Google Scholar
Gaitsgory, D. and Rozenblyum, N., A study in derived algebraic geometry, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, Providence, RI, 2017).Google Scholar
Ganatra, S., Perutz, T. and Sheridan, N., Mirror symmetry: from categories to curve counts, Preprint (2015), arXiv:1510.03839.Google Scholar
Ginzburg, V., Calabi-Yau algebras, Preprint (2006), arXiv:math/0612139.Google Scholar
Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Hoyois, M., The fixed points of the circle action on Hochschild homology, Preprint (2015), arXiv:1506.07123.Google Scholar
Jones, J. D. S., Cyclic homology and equivariant homology , Invent. Math. 87 (1987), 403423.Google Scholar
Kassel, C., Cyclic homology, comodules, and mixed complexes , J. Algebra 107 (1987), 195216.Google Scholar
Keller, B. and Van den Bergh, M., Deformed Calabi–Yau completions , J. Reine Angew. Math. 2011 (2011), 125180.Google Scholar
Kelly, G. M., Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, vol. 64 (Cambridge University Press, Cambridge, 1982).Google Scholar
Kontsevich, M., Symplectic geometry of homological algebra, Preprint (2009), http://www.ihes.fr/∼maxim/TEXTS/Symplectic_AT2009.pdf.Google Scholar
Kontsevich, M. and Soibelman, Y., Notes on A-infinity algebras, A-infinity categories and non-commutative geometry I, Preprint (2006), arXiv:math.RA/0606241.Google Scholar
Kontsevich, M. and Vlassopoulos, Y., Weak Calabi-Yau algebras (2013), notes for a talk, https://math.berkeley.edu/∼auroux/miami2013.html.Google Scholar
Loday, J.-L., Cyclic homology, Grundlehren der mathematischen Wissenschaften, vol. 301 (Springer, 2013).Google Scholar
Lurie, J., Higher topos theory, Annals of Mathematics Studies, vol. 170 (Princeton University Press, Princeton, NJ, 2009).Google Scholar
Lurie, J., On the classification of topological field theories, Preprint (2009), arXiv:math/0905.0465.Google Scholar
Lurie, J., Algebraic L-theory and surgery, lecture notes (2011), http://www.math.harvard.edu/∼lurie/287x.html.Google Scholar
Lurie, J., Higher Algebra, Preprint (May 2011), http://www.math.harvard.edu/∼lurie/papers/HA.pdf.Google Scholar
Pantev, T., Toën, B., Vaquié, M. and Vezzosi, G., Shifted symplectic structures , Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271328.Google Scholar
Seidel, P., Fukaya categories and Picard-Lefschetz theory (European Mathematical Society, 2008).Google Scholar
Seidel, P., Fukaya A -structures associated to Lefschetz fibrations. I , J. Symplectic Geom. 10 (2012), 325388.Google Scholar
Shende, V. and Takeda, A., Symplectic structures from topological Fukaya categories, Preprint (2016), arXiv:1605.02721.Google Scholar
Tabuada, G., Non-commutative André–Quillen cohomology for differential graded categories , J. Algebra 321 (2009), 29262942.Google Scholar
Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories , in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, MA, 1990), 247435.Google Scholar
Toën, B., The homotopy theory of dg-categories and derived Morita theory , Invent. Math. 167 (2007), 615667.Google Scholar
Toën, B., Derived algebraic geometry, Preprint (2014), arXiv:1401.1044.Google Scholar
Toën, B. and Vaquié, M., Moduli of objects in dg-categories , Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 387444.Google Scholar