Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:03:46.975Z Has data issue: false hasContentIssue false

Poitou–Tate duality for arithmetic schemes

Published online by Cambridge University Press:  23 August 2018

Thomas H. Geisser
Affiliation:
Rikkyo University, Department of Mathematics, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan email [email protected]
Alexander Schmidt
Affiliation:
Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany email [email protected]

Abstract

We give a generalization of Poitou–Tate duality to schemes of finite type over rings of integers of global fields.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloch, S., Algebraic cycles and higher K-theory , Adv. Math. 61 (1986), 267304.Google Scholar
Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas , Publ. Math. Inst. Hautes Études Sci. 20 (1964), 24 (1965), 28 (1966), 32 (1967).Google Scholar
Fujiwara, K., A proof of the absolute purity conjecture (after Gabber) , in Algebraic geometry 2000, Azumino, Advanced Studies in Pure Mathematics, vol. 36 (Mathematical Society of Japan, Tokyo, 2002), 153183.Google Scholar
Geisser, T., Levine, The Bloch–Kato conjecture and a theorem of Suslin–Voevodsky , J. Reine Angew. Math. 530 (2001), 55103.Google Scholar
Geisser, T., Duality via cycle complexes , Ann. of Math. (2) 172 (2010), 10951126.Google Scholar
Levine, M., $K$ -theory and motivic cohomology of schemes, Preprint (1999), http://www.math.uiuc.edu/K-theory/0336/.Google Scholar
Mazur, B., Notes on étale cohomology of number fields , Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 521552; (1974).Google Scholar
Milne, J. S., Etale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Milne, J. S., Arithmetic duality theorems, second edition (BookSurge, LLC, Charleston, SC, 2006).Google Scholar
Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields, Grundlehren der mathematischen Wissenschaften, vol. 323, second edition (Springer, Berlin, 2008).Google Scholar
Saito, S., A global duality theorem for varieties over global fields , in Algebraic K-theory: connections with geometry and topology (Springer, 1989), 425444.Google Scholar
Schmidt, A., Singular homology of arithmetic schemes , Algebra Number Theory 1 (2007), 183222.Google Scholar
Artin, M., Grothendieck, A. and Verdier, J. L., Séminaire de Géométrie Algébrique du Bois-Marie – Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Mathematics vols 269, 270 and 305 (Springer, 1972/3).Google Scholar
Deligne, P., Théorème de finitude en cohomologie l-adic , in Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4½), avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics 569 (Springer, Berlin–New York, 1977).Google Scholar
The Stacks Project Authors, Stacks Project (2017), http://stacks.math.columbia.edu.Google Scholar
Zink, T., Etale cohomology and duality in number fields , in Appendix 2 to K. Haberland: Galois cohomology of algebraic number fields (Dt. Verlag der Wissenschaften, Berlin, 1978).Google Scholar