Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:12:55.207Z Has data issue: false hasContentIssue false

The Hodge diamond of O’Grady’s six-dimensional example

Published online by Cambridge University Press:  21 March 2018

Giovanni Mongardi
Affiliation:
Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Piazza di Porta San Donato 5, Bologna 40126, Italia email [email protected]
Antonio Rapagnetta
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133, Italia email [email protected]
Giulia Saccà
Affiliation:
Department of Mathematics, Stony Brook University, Stony Brook, NY 11974-3651, USA email [email protected]

Abstract

We realize O’Grady’s six-dimensional example of an irreducible holomorphic symplectic (IHS) manifold as a quotient of an IHS manifold of $\text{K3}^{[3]}$ type by a birational involution, thereby computing its Hodge numbers.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbarello, E. and Saccà, G., Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties , Adv. Math. (2018), doi:10.1016/j.aim.2018.02.003.CrossRefGoogle Scholar
Beauville, A., Variétés Kählériennes dont la première classe de Chern est nulle , J. Differential Geom. 18 (1983), 755782.Google Scholar
Beauville, A., Counting rational curves on K3 surfaces , Duke Math. J. 97 (1999), 99108.CrossRefGoogle Scholar
Bogomolov, F., Hamiltonian Kähler manifolds , Soviet Math. Dokl. 19 (1978), 14621465.Google Scholar
Boissiére, S. and Sarti, A., A note on automorphisms and birational transformations of holomorphic symplectic manifolds , Proc. Amer. Math. Soc. 140 (2012), 40534062.Google Scholar
Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebra, Van Nostrand Reinhold Mathematics Series (Van Nostrand Reinhold, New York, 1993).Google Scholar
Fujiki, A. and Nakano, S., Supplement to ‘On the inverse of monoidal transformation’ , Publ. Res. Inst. Math. Sci. 7 (1971/72), 637644.Google Scholar
Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, second edition (Springer, Berlin, 1998).Google Scholar
Göttsche, L., The Betti numbers of the Hilbert scheme of points on a smooth projective surface , Math. Ann. 286 (1990), 193207.Google Scholar
Göttsche, L. and Sörgel, W., Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces , Math. Ann. 296 (1993), 235245.CrossRefGoogle Scholar
Greb, D., Lehn, C. and Rollenske, S., Lagrangian fibrations of hyperkähler manifolds, on a question of Beauville , Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 375403.Google Scholar
Grothendieck, A., Revètements étales et groupe fondamental , in Fasc. I: Exposès 1 à 5. Séminaire de Géométrie Algébrique, 1960/61, Troisième édition (corrigée; Institut des Hautes Études Scientifiques, Paris, 1963).Google Scholar
Hesselink, W., The normality of closures of orbits in a Lie algebra , Comment. Math. Helv. 54 (1979), 105110.Google Scholar
Höhn, G. and Mason, G., Finite groups of symplectic automorphisms of hyperkähler manifolds of type $K3^{[2]}$ , Preprint (2014), arXiv:1409.6055.Google Scholar
Huybrechts, D., Compact hyperkähler manifolds: basic results , Invent. Math. 135 (1999), 63113.Google Scholar
Huybrechts, D., The Kähler cone of a compact hyperkähler manifold , Math. Ann. 326 (2003), 499513.Google Scholar
Huybrechts, D. and Lehn, M., The geometry of moduli spaces of sheaves (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
Kawatani, K., On the birational geometry for irreducible symplectic 4-folds related to the Fano schemes of lines, Preprint (2009), arXiv:0906.0654.Google Scholar
Kollar, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Lehn, M. and Sorger, C., La singularité de O’Grady , J. Algebraic Geom. 15 (2006), 753770.Google Scholar
Le Potier, J., Systèmes cohérents et structures de niveau , Astérisque 214 (1993).Google Scholar
Markman, E., Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces , J. Reine Angew. Math. 544 (2002), 6182.Google Scholar
Menet, G., Beauville–Bogomolov lattice for a singular symplectic variety of dimension 4 , J. Pure Appl. Algebra 219 (2015), 14551495.Google Scholar
Mongardi, G., Towards a classification of symplectic automorphisms on manifolds of K3[n] type , Math. Z. 282 (2016), 651662.Google Scholar
Mongardi, G. and Wandel, M., Automorphisms of O’Grady’s manifolds acting trivially on cohomology , Algebr. Geom. 4 (2017), 104119.CrossRefGoogle Scholar
Mozgovyy, S., The Euler number of O’Grady’s ten dimensional symplectic manifold, PhD Thesis, Mainz Universität (2006).Google Scholar
Mukai, S., Moduli of vector bundles on K3 surfaces and symplectic manifolds , Sugaku Expositions 1 (1988), 139174.Google Scholar
Nakano, S., On the inverse of monoidal transformations , Publ. Res. Inst. Math. Sci. 6 (1971), 483502.Google Scholar
O’Grady, K. G., Desingularized moduli spaces of sheaves on a K3 , J. Reine Angew. Math. 512 (1999), 49117.Google Scholar
O’Grady, K. G., A new six-dimensional irreducible symplectic variety , J. Algebraic Geom. 12 (2003), 435505.Google Scholar
O’Grady, K. G., Higher dimensional analogues of K3 surfaces. Current developments in algebraic geometry , Publ. Res. Inst. Math. Sci. 59 (2012), 257293.Google Scholar
Perego, A. and Rapagnetta, A., Deformation of the O’Grady moduli spaces , J. Reine Angew. Math. 678 (2013), 134.CrossRefGoogle Scholar
Perego, A. and Rapagnetta, A., Factoriality properties of moduli spaces of sheaves on abelian and K3 surfaces , Int. Math. Res. Not. IMRN 2014 (2014), 643680.Google Scholar
Rapagnetta, A., Topological invariants of O’Grady’s six dimensional irreducible symplectic variety, PhD thesis, Università degli studi di Roma Tor Vergata, 2004.Google Scholar
Rapagnetta, A., On the Beauville form of known irreducible symplectic varieties , Math. Ann. 340 (2008), 7795.CrossRefGoogle Scholar
Salamon, S., On the cohomology of Kähler and hyperkähler manifolds , Topology 35 (1996), 137155.CrossRefGoogle Scholar
Sawon, J., Rozansky–Witten invariants of hyperkähler manifolds, PhD thesis, University of Cambridge, 1999.Google Scholar
Voisin, C., Hodge theory and complex algebraic geometry. I. Translated from the French by Leila Schneps, Cambridge Studies in Advanced Mathematics, vol. 76; reprint of the 2002 English edition (Cambridge University Press, Cambridge, 2007).Google Scholar
Yoshioka, K., Moduli of vector bundles on algebraic surfaces , Sugaku Expositions 20 (2007), 111135.Google Scholar