No CrossRef data available.
Published online by Cambridge University Press: 04 May 2015
Inspired by symplectic geometry and a microlocal characterizations of perverse (constructible) sheaves we consider an alternative definition of perverse coherent sheaves. We show that a coherent sheaf is perverse if and only if $R{\rm\Gamma}_{Z}{\mathcal{F}}$ is concentrated in degree $0$ for special subvarieties $Z$ of $X$. These subvarieties $Z$ are analogs of Lagrangians in the symplectic case.