Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:15:57.008Z Has data issue: false hasContentIssue false

Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg models

Published online by Cambridge University Press:  23 March 2017

Yuki Hirano*
Affiliation:
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji-shi, Tokyo, 192-0397, Japan email [email protected]

Abstract

We prove a Knörrer-periodicity-type equivalence between derived factorization categories of gauged Landau–Ginzburg models, which is an analogy of a theorem proved by Shipman and Isik independently. As an application, we obtain a gauged Landau–Ginzburg version of Orlov’s theorem describing a relationship between categories of graded matrix factorizations and derived categories of hypersurfaces in projective spaces, by combining the above Knörrer periodicity type equivalence and the theory of variations of geometric invariant theory quotients due to Ballard, Favero and Katzarkov.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, N., Donovan, W. and Segal, E., The Pfaffian–Grassmannian equivalence revisited , Algebr. Geom. 2 (2015), 332364.Google Scholar
Ballard, M., Deliu, D., Favero, D., Isik, M. U. and Katzarkov, L., Homological projective duality via variation of geometric invariant theory quotients, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2013), arXiv:1306.3957.Google Scholar
Ballard, M., Deliu, D., Favero, D., Isik, M. U. and Katzarkov, L., On the derived categories of degree d hypersurface fibrations, Preprint (2014), arXiv:1409.5568.Google Scholar
Ballard, M., Deliu, D., Favero, D., Isik, M. U. and Katzarkov, L., Resolutions in factorization categories , Adv. Math. 295 (2016), 195249.Google Scholar
Ballard, M., Favero, D. and Katzarkov, L., Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math., to appear. Preprint (2012), arXiv:1203.6643.Google Scholar
Ballard, M., Favero, D. and Katzarkov, L., A category of kernels for equivariant factorizations and its implications for Hodge theory , Publ. Math. Inst. Hautes Études Sci. 120 (2014), 1111.CrossRefGoogle Scholar
Efimov, A. I. and Positselski, L., Coherent analogues of matrix factorizations and relative singularity categories , Algebra Number Theory 9 (2015), 11591292.CrossRefGoogle Scholar
Halpern-Leistner, D., The derived category of a GIT quotient , J. Amer. Math. Soc. 28 (2015), 871912.Google Scholar
Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, vol. 20 (Springer, Heidelberg, 1966).Google Scholar
Hirano, Y., Equivalences of derived factorization categories of gauged Landau–Ginzburg models , Adv. Math. 306 (2017), 200278.Google Scholar
Isik, M. U., Equivalence of the derived category of a variety with a singularity category , Int. Math. Res. Not. IMRN 2013 (2013), 27872808.Google Scholar
Johnstone, P. T., Sketches of an elephant: a topos theory compendium, Vol. 1, Oxford Logic Guides, vol. 43 (The Clarendon Press, Oxford University Press, New York, 2002).Google Scholar
Knörrer, H., Cohen–Macaulay modules on hypersurface singularities I , Invent. Math. 88 (1987), 153164.Google Scholar
Kuznetsov, A. G., Hyperplane sections and derived categories , Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), 23128 (Russian); translation in Izv. Math. 70 (2006), 447–547.Google Scholar
Lunts, V. A. and Schnürer, O. M., Matrix factorizations and semi-orthogonal decompositions for blowing-ups , J. Noncommut. Geom. 10 (2016), 907979.Google Scholar
Mumford, D., Forgarty, J. and Kirwan, F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, third edition (Springer, Berlin, 1994).Google Scholar
Neeman, A., The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547566.Google Scholar
Orlov, D. O., Triangulated categories of singularities and D-branes in Landau–Ginzburg models , Tr. Mat. Inst. Steklova 246 (2004), 240262 (Russian); translation in Proc. Steklov Math. Inst. 246, (2004), 227–248.Google Scholar
Orlov, D. O., Triangulated categories of singularities and equivalences between Landau–Ginzburg models , Mat. Sb. 197 (2006), 117132; translation in Sb. Math. 197 (2006), 1827–1840.Google Scholar
Orlov, D., Derived categories of coherent sheaves and triangulated categories of singularities , in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, Vol. II, Progress in Mathematics, vol. 270 (Birkhäuser, Boston, MA, 2009), 503531.Google Scholar
Polishchuk, A. and Vaintrob, A., Matrix factorizations and singularity categories for stacks , Ann. Inst. Fourier (Grenoble) 61 (2011), 26092642.CrossRefGoogle Scholar
Positselski, L., Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Memoirs of the American Mathematical Society, vol. 212 (American Mathematical Society, Providence, RI, 2011).Google Scholar
Positselski, L., Contraherent cosheaves, Preprint (2012), arXiv:1209:2995.Google Scholar
Rennemo, J. V., The homological projective dual of $\text{Sym}^{2}\mathbb{P}(V)$ , Preprint (2015),arXiv:1509.04107.Google Scholar
Segal, E., Equivalence between GIT quotients of Landau–Ginzburg B-models , Comm. Math. Phys. 304 (2011), 411432.Google Scholar
Segal, E. and Thomas, R., Quintic threefolds and Fano elevenfolds, J. Reine Angew. Math., to appear. Preprint (2014), arXiv:1410.6829.Google Scholar
Shipman, I., A geometric approach to Orlov’s theorem , Compositio Math. 148 (2012), 13651389.Google Scholar
Thomason, R. W., Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes , Adv. Math. 65 (1987), 1634.Google Scholar
Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories , in The Grothendieck Festschrift, Vol. II, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, MA, 1990), 247435.Google Scholar
Tousi, M. and Yassemi, S., Tensor products of some special rings , J. Algebra 268 (2003), 672676.Google Scholar