Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T14:43:30.787Z Has data issue: false hasContentIssue false

Simulations of Boiling Systems Using a Lattice Boltzmann Method

Published online by Cambridge University Press:  03 June 2015

L. Biferale*
Affiliation:
Department of Physics and INFN, University of Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy Department of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
P. Perlekar
Affiliation:
Department of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
M. Sbragaglia
Affiliation:
Department of Physics and INFN, University of Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
F. Toschi
Affiliation:
Department of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
*
Corresponding author.Email:[email protected]
Get access

Abstract

We report about a numerical algorithm based on the lattice Boltzmann method and its applications for simulations of turbulent convection in multi-phase flows. We discuss the issue of ’latent heat’ definition using a thermodynamically consistent pseudo-potential on the lattice. We present results of numerical simulations in 3D with and without boiling, showing the distribution of pressure, density and temperature fluctuations inside a convective cell.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cardin, P. & Olson, P., Phys. of The Earth and Planetary Interiors, 82, 235259 (1994); Glatzmaier, G.A. & Roberts, P. H., Nature, 377, 203209 (1995).CrossRefGoogle Scholar
[2]Bodenschatz, E., Pesch, W. & Ahlers, G., Annu. Rev. Fluid Mech., 32, 709778 (2000); Ahlers, G., Grossmann, S. & Lohse, D., Rev. Mod. Phys., 81, 503 (2009).CrossRefGoogle Scholar
[3]Zhong, J.-Q., Funfschilling, D. & Ahlers, G., Phys. Rev. Lett., 102, 124501 (2009).Google Scholar
[4]Dhir, V.K., Annu. Rev. Fluid Mech., 30, 365401 (1998).CrossRefGoogle Scholar
[5]Oresta, P.et al., Phys. Rev. E, 80, 026304 (2009).CrossRefGoogle Scholar
[6]Spiegel, A. & Veronis, G., Astrophys. J., 131, 442 (1960).Google Scholar
[7]Shan, X. & Chen, H., Phys. Rev. E, 47, 1815 (1993).Google Scholar
[8]Zhang, R. & Chen, H., Phys. Rev. E, 67, 066711 (2003).Google Scholar
[9]Sbragaglia, M.et al., J. Fluid Mech., 628, 299 (2009).CrossRefGoogle Scholar
[10]Biferale, L.et al., Phys. Fluids, 22, 115112 (2011).CrossRefGoogle Scholar
[11]Biferale, L.et al., Phys. Rev. E, 84, 016305 (2011).CrossRefGoogle Scholar
[12]Shan, X., Phys. Rev. E, 77, 066702 (2008).Google Scholar
[13]Sbragaglia, M.et al., Phys. Rev. E, 75, 026702 (2007).CrossRefGoogle Scholar
[14]Succi, S., The Lattice Boltzmann Equation, Oxford Science, New York, 2001.Google Scholar
[15]Latt, J., PhD Thesis, University of Geneve, 2007.Google Scholar
[16]Shi, B. & Guo, Z., Phys. Rev. E, 79, 016701 (2009); Guo, Z., Zheng, C. & Shi, B., Phys. Rev. E, 65, 046308 (2002).Google Scholar
[17]Zhang, J. & Tian, F., Europhys. Lett., 81, 66005 (2008).Google Scholar
[18]Prasianakis, N.I. & Karlin, I.V., Phys. Rev. E, 76, 016702 (2007).CrossRefGoogle Scholar
[19]Sbragaglia, M. & Shan, X., Phys. Rev. E, 84, 036703 (2011).Google Scholar
[20]Biferale, L., Perlekar, P., Sbragalia, M. & Toschi, F., Phys. Rev. Lett, submitted (2011).Google Scholar