Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T16:13:49.608Z Has data issue: false hasContentIssue false

Remarkable Thermal Contraction in Small Size Single-Walled Boron Nanotubes

Published online by Cambridge University Press:  03 June 2015

Xianhu Zha
Affiliation:
Department of Physics & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong USTC-CityU Joint Advanced Research Centre, Suzhou 215123, China
Shuang Li
Affiliation:
Nano Structured Materials Center, Nanjing University of Science and Technology, Nanjing 210094, China
Ruiqin Zhang*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
Zijing Lin*
Affiliation:
Department of Physics & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China
*
Corresponding author.Email:[email protected]
Get access

Abstract

Density functional theory combined with the Grüneisen approximation is used to calculate the thermal properties of single-walled boron nanotubes (BNTs). The specific heat and thermal expansion are investigated. The thermal expansion coefficient of the BNT is found to be significantly correlated with tube size and chirality. A remarkable thermal contraction is found at small tube diameters. These results indicate that BNTs would have potential applications in sensors, actuators, and memory materials.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Iijima, S., Helical microtubules of graphitic carbon, Nature (London), 354 (1991), 5658.Google Scholar
[2]Overney, G., Zhong, W. and Tomanek, D., Structural rigidity and low frequency vibrational modes of long carbon tubules, Z. Phys. D, 27 (1993), 9396.Google Scholar
[3]Iijima, S., Brabec, C., Maiti, A. and Bernholc, J., Structural flexibility of carbon nanotubes, J. Chem. Phys., 104 (1996), 20892092.CrossRefGoogle Scholar
[4]Lu, J., Elastic properties of single and multilayered nanotubes, J. Phys. Chem. Solids, 58 (1997), 16491652.Google Scholar
[5]Xu, Y., Peng, H., Hauge, R. H. and Smalley, R. E., Controlled multistep purification of singlewalled carbon nanotubes, Nano Lett., 5 (2005), 163168.Google Scholar
[6]Liu, F., Shen, C., Su, Z., Ding, X., Deng, S., Chen, J., Xu, N. and Gao, H., Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties, J. Mater. Chem., 20 (2010), 21972205.CrossRefGoogle Scholar
[7]Matkovich, V. I., Boron and Refractory Borides, Springer, New York, 1977.Google Scholar
[8]Ciuparu, D., Klie, R. F., Zhu, Y. and Pfefferle, L., Synthesis of pure boron single-wall nanotubes, J. Phys. Chem. B, 108 (2004), 39673969.Google Scholar
[9]Evans, M. H., Joannopoulos, J. D. and Pantelides, S. T., Electronic and mechanical properties of planar and tubular boron structures, Phys. Rev. B, 72 (2005), 045434(6).Google Scholar
[10]Kunstmann, J. and Quandt, A., Constricted boron nanotubes, Chem. Phys. Lett., 402 (2005), 2126.Google Scholar
[11]Kunstmann, J. and Quandt, A., Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties, Phys. Rev. B, 74 (2006), 035413(14).Google Scholar
[12]Lau, K. C. and Pandey, R., Stability and electronic properties of atomistically-engineered 2D boron sheets, J. Phys. Chem. C, 111 (2007), 29062912.CrossRefGoogle Scholar
[13]Cabria, I., Lopez, M. J. and Alonso, J. A., Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology, 17 (2006), 778785.CrossRefGoogle Scholar
[14]Tang, H. and Ismail-Beigi, S., Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets, Phys. Rev. Lett., 99 (2007), 115501(4).Google Scholar
[15]Yang, X., Ding, Y. and Ni, J., Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties, Phys. Rev. B, 77 (2008), 041402(4).Google Scholar
[16]Tang, H. and Ismail-Beigi, S., First-principles study of boron sheets and nanotubes, Phys. Rev. B, 82 (2010), 115412(20).Google Scholar
[17]Lu, H., Mu, Y., Bai, H., Chen, Q. and Li, S. D., Binary nature of monolayer boron sheets from ab initio global searches, J. Chem. Phys., 138 (2013), 024701(4).Google Scholar
[18]Bezugly, V., Kunstmann, J., Grundkotter-Stock, B., Frauenheim, T., Niehaus, T. and Cuniberti, G., Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities, ACS Nano, 5 (2011), 49975005.Google Scholar
[19]Wu, X., Dai, J., Zhao, Y., Zhuo, Z., Yang, J. and Zeng, X. C., Two-dimensional boron monolayer sheets, ACS Nano, 6 (2012), 74437453.Google Scholar
[20]Singh, A. K., Sadrzadeh, A. and Yakobson, B. I., Probing properties of boron a-tubes by ab initio calculations, Nano Lett., 8 (2008), 13141317.Google Scholar
[21]Lau, K. C., Pandey, R. and Pati, R., Theoretical study of electron transport in boron nanotubes, Appl. Phys. Lett., 88 (2006), 212111(3).Google Scholar
[22]Zhu, J., Andres, C. M., Xu, J., Ramamoorthy, A., Tsotsis, T. and Kotov, N. A., Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies, ACS Nano, 6 (2012), 83578365.CrossRefGoogle ScholarPubMed
[23]Kohn, W. and Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965), 11331138.Google Scholar
[24]Ordejon, P., Artacho, E. and Soler, J. M., Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B, 53 (1996), 1044110444.CrossRefGoogle ScholarPubMed
[25]Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter, 14 (2002), 27452779.Google Scholar
[26]Perdew, J. P., Burke, K. and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996), 38653868.Google Scholar
[27]Baroni, S., de Gironcoli, S. and Corso, A. D., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73 (2001), 515562.Google Scholar
[28]Kahaly, M. U. and Waghmare, U. V., Size dependence of thermal properties of armchair nanotubes: a first-principles study, Appl. Phys. Lett., 91 (2007), 023112(3).Google Scholar
[29]Schelling, P. K. and Keblinski, P., Thermal expansion of carbon structures, Phys. Rev. B, 68 (2003), 035425(7).CrossRefGoogle Scholar
[30]Cao, G., Chen, X. and Kysar, J. W., Apparent thermal contraction of single-walled carbon nanotubes, Phys. Rev. B, 72 (2005), 235404(6).Google Scholar
[31]Jiang, H., Liu, B., Huang, Y. and Hwang, K. C., Thermal expansion of single wall carbon nanotubes, J. Eng. Mater. Technol., 126 (2004), 265270.Google Scholar
[32]Kwon, Y., Berber, S. and Tomanek, D., Thermal contraction of carbon fullerenes and nanotubes, Phys. Rev. Lett., 92 (2004), 015901(4).Google Scholar
[33]Giannozzi, P., de Gironcoli, S., Pavone, P. and Baroni, S., Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B, 43 (1991), 72317242.CrossRefGoogle ScholarPubMed
[34]Kokalj, A., XCrySDen-a new program for displaying crystalline structures and electron densities, J. Mol. Graph. Model., 17 (1999), 176179.Google Scholar
[35]Fujimori, M., Nakata, T., Nakayama, T., Nishibori, E., Kimura, K., Takata, M. and Sakata, M., Peculiar covalent bonds in a-rhombohedral boron, Phys. Rev. Lett., 82 (1999), 44524455.Google Scholar
[36]Vast, N., Baroni, S., Zerah, G., Besson, J. M., Polian, A., Grimsditch, M. and Chervin, J. C., Lattice dynamics of icosahedral a-boron under pressure, Phys. Rev. Lett., 78 (1997), 693696.CrossRefGoogle Scholar
[37]Shang, S., Wang, Y., Arroyave, R. and Liu, Z., Phase stability in α- and β-rhombohedral boron, Phys. Rev. B, 75 (2007), 092101(4).Google Scholar
[38]Masago, A., Shirai, K. and Katayama-Yoshida, H., Crystal stability of α- and β-boron, Phys. Rev. B, 73 (2006), 104102(10).Google Scholar
[39]Li, D., Xu, Y. and Ching, W. Y., Electronic structures, total energies, and optical properties of α-rhombohedral B12 and α-tetragonal B50 crystals, Phys. Rev. B, 45 (1992), 58955905.CrossRefGoogle Scholar
[40]Boustani, I., Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n = 2 − 14), Phys. Rev. B, 55 (1997), 1642616438.Google Scholar
[41]Thostenson, E. T., Ren, Z. and Chou, T., Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61 (2001), 18991912.CrossRefGoogle Scholar
[42]Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N. and Treacy, M. M. J., Young’s modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 1401314019.Google Scholar
[43]Boustani, I., Quandt, A., Hernandez, E. and Rubio, A., New boron based nanostructured materials, J. Chem. Phys., 110 (1999), 31763185.Google Scholar
[44]Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Kataura, H., Suzuki, S. and Achiba, Y., Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies, Phys. Rev. B, 64 (2001), 241402(3).Google Scholar