Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T09:31:58.579Z Has data issue: false hasContentIssue false

Parameter-Free Time Adaptivity Based on Energy Evolution for the Cahn-Hilliard Equation

Published online by Cambridge University Press:  17 May 2016

Fuesheng Luo*
Affiliation:
The Third Institute of Oceanography, SOA, Xiamen 361005, China
Tao Tang*
Affiliation:
Department of Mathematics, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
Hehu Xie*
Affiliation:
LSEC, ICMSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
*
*Corresponding author. Email addresses:[email protected] (F. Luo), [email protected] (T. Tang), [email protected] (H. Xie)
*Corresponding author. Email addresses:[email protected] (F. Luo), [email protected] (T. Tang), [email protected] (H. Xie)
*Corresponding author. Email addresses:[email protected] (F. Luo), [email protected] (T. Tang), [email protected] (H. Xie)
Get access

Abstract

It is known that large time-stepping method are useful for simulating phase field models. In this work, an adaptive time-stepping strategy is proposed based on numerical energy stability and equi-distribution principle. The main idea is to use the energy variation as an indicator to update the time step, so that the resulting algorithm is free of user-defined parameters, which is different from several existing approaches. Some numerical experiments are presented to illustrate the effectiveness of the algorithms.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cahn, J.W. and Hilliard, J. E., Free energy of a non-uniform system I: Interfacial free energy, J. Chem. Phys., 28 (1958), 258267.Google Scholar
[2]Choo, S. M., Chung, S. K. and Kim, K. I., Conservative nonlinear difference scheme for the Cahn-Hilliard equation-II, Comput. Math. Appl., 39 (2000), 229243.Google Scholar
[3]Eyre, D., An unconditionally stable one-step scheme for gradient systems, Preprint, 1998.Google Scholar
[4]Demmel, J. W., Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, 1997.Google Scholar
[5]Doyle, J. C., Francis, B. A. and Tannenbaum, A. R., Feedback Control Theory, Macmillan Publishing Co., 1990.Google Scholar
[6]Du, Q. and Nicolaides, R. A., Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1994), 13101322.Google Scholar
[7]Du, Q., Tian, L. and Ju, L., Finite element approximation of the Cahn-Hilliard equation on surfaces, Comp. Meth. Appl. Mech. Engr, 200 (2011), 24582470.Google Scholar
[8]Elliott, C. M. and French, D. A., Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97128.Google Scholar
[9]Elliott, C. M. and Zheng, S. M., On the Cahn-Hilliard equation, Arch. Rat. Meth. Anal., 96 (1986), 339357.Google Scholar
[10]Cueto-Felgueroso, L. and Peraire, J., A time-adaptive finite volume method for the Cahn-Hillard and Kuramoto-Sivashinsky equations, J. Comput. Phys., 227 (2008), 998510017.Google Scholar
[11]Feng, W., Yu, P., Hu, S., Liu, Z., Du, Q. and Chen, L., A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity, Commun. Comput. Phys., 5 (2009), 582599.Google Scholar
[12]Feng, X., Tang, T. and Yang, J., Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Computing, 37 (2015), A271A294.CrossRefGoogle Scholar
[13]Franklin, G., Powell, J. D. and Emami-Naeini, A., Feedback Control of Dynamic Systems, Prentice Hall, 2006.Google Scholar
[14]Furihata, D., A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675699.CrossRefGoogle Scholar
[15]Gomez, H., Hughes, T.J.R., Provably unconditionally stable, second-order time accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230 (2011), 53105327.Google Scholar
[16]He, L. and Liu, Y., A class of stable spectral methods for the Cahn-Hillard equation, J. Comput. Phys., 228 (2009), 51015110.CrossRefGoogle Scholar
[17]He, Y. N., Liu, Y. X. and Tang, T., On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616628.CrossRefGoogle Scholar
[18]Li, B. and Liu, J. G., Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), 713743.CrossRefGoogle Scholar
[19]Novick-Cohen, A. and Segel, L. A., Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10 (1984), 277298.Google Scholar
[20]Qiao, Z. H., Zhang, Z. R., and Tang, T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM. J. Sci. Comput., 33 (2011), 13951414.Google Scholar
[21]Shen, J., Tang, T. and Wang, L., Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin Heidelberg, 2011.CrossRefGoogle Scholar
[22]Shen, J., Wang, C., Wang, X. and Wise, S., Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105125.Google Scholar
[23]Shen, J. and Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, DCDS, Series A, 28 (2010), 16691691.Google Scholar
[24]Söderlind, G., Automatic control and adaptive time-stepping, Numer. Algor., 31 (2001), 281310.Google Scholar
[25]Sun, Z. Z., A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation, Math. Comput., 64 (1995), 14631471.Google Scholar
[26]Wells, G., Kuhl, E. and Garikipati, K., A discontinuous Galerkin method for the Cahn-Hillard equation, J. Comput. Phys., 218 (2006), 860877.Google Scholar
[27]Wise, S. M., Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hillard-Hele-Shaw system of equations, J. Sci. Comput., 44 (2010), 3868.Google Scholar
[28]Xu, C. J. and Tang, T., Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), 17591779.Google Scholar
[29]Zhang, Z. R. and Qiao, Z. H., An adaptive time-stepping strategy for the Cahn-Hilliard equation, Commun. Comput. Phys., 11 (2012), 12611278.Google Scholar
[30]Zhu, J., Chen, L., Shen, J. and Tikare, V., Coarsening kinetics from a variable mobility Cahn-Hilliard equation-application of semi-implicit Fourier spectral method, Phys. Review E, 60(4) (1999), 35643572.Google Scholar