Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T23:20:16.506Z Has data issue: false hasContentIssue false

A Numerical Study of Quantum Decoherence

Published online by Cambridge University Press:  20 August 2015

Riccardo Adami*
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi, 53 20125 Milano, Italy
Claudia Negulescu*
Affiliation:
CMI/LATP (UMR 6632), Université de Provence, 39, rue Joliot Curie, 13453 Marseille Cedex 13, France
*
Corresponding author.Email:[email protected]
Get access

Abstract

The present paper provides a numerical investigation of the decoherence effect induced on a quantum heavy particle by the scattering with a light one. The time dependent two-particle Schrödinger equation is solved by means of a time-splitting method. The damping undergone by the non-diagonal terms of the heavy particle density matrix is estimated numerically as well as the error in the Joos-Zeh approximation formula.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adami, R., Erdős, L., Rate of decoherence for an electron weakly coupled to a phonon gas, J. Stat. Phys. 132 (2008), no. 2, 301328.CrossRefGoogle Scholar
[2]Adami, R., Figari, R., Finco, D., Teta, A., On the asymptotic behaviour of a quantum two-body system in the small mass ratio limit, J. Phys. A: Math. Gen., 37 (2004), 75677580.Google Scholar
[3]Adami, R., Figari, R., Finco, D., Teta, A., On the asymptotic dynamics of a quantum system composed by heavy and light particles, Comm. Math. Phys. 268 (2006), no. 3, 819852.Google Scholar
[4]Adami, R., Hauray, M., Negulescu, C. Accelerate and precise numerical resolution of the anisotropic two-body Schrödinger equation. Application to decoherence, in preparation.Google Scholar
[5]Bertoni, A., Simulation of Electron Decoherence Induced by Carrier-Carrier Scattering, J. Comp. El. 2 (2003), 291295.Google Scholar
[6]Blanchard, Ph., Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D., Decoher-ence and the Appearance of a Classical World in Quantum Theory, Springer, 1996.Google Scholar
[7]Breuer, H.-P., Petruccione, F., The Theory of Open Quantum Systems, Oxford University Press, Oxford, 2007.CrossRefGoogle Scholar
[8]Cacciapuoti, C., Carlone, R., Figari, R., Decoherence induced by scattering: a three dimensional model. J. Phys. A: Math. Gen., 38 (2005), no. 22, 49334946.Google Scholar
[9]Caldeira, A.O., Leggett, A.J., Influence of damping on quantum interference: an exactly soluble model, Phys. Rev. A 31 (1985), 1059.Google Scholar
[10]Clark, J., The reduced effect of a single scattering with a low-mass particle via a point interaction, J. Func. An. 256 (2009), no. 9, 28942916.Google Scholar
[11]Cohen-Tannoudji, C., Diu, B., Laloé, F.Mëcanique quantique I, Hermann éditeurs des sciences et des arts, Paris, 1998.Google Scholar
[12]Dell’Antonio, G., Towards a theory of decoherence, Int. J. Mod. Phys. B, 18 (2004), no. 4-5, 643–654.Google Scholar
[13]Dürr, D., Bohmsche Mechanik als Grundlage der Quantenmechanik, Springer Verlag, 2001.Google Scholar
[14]Dürr, D., Figari, R., Teta, A., Decoherence in a two-particle model, J. Math. Phys. 45 (2004), no. 4, 12911309.Google Scholar
[15]Dürr, D., Spohn, H., Decoherence Through Coupling to the Radiation Field, in Decoherence: Theoretical, Experimental and Conceptual Problems, Blanchard, Ph., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. eds., Lect. Notes in Phys. 538 (2000), Springer, 77–86.Google Scholar
[16]Dürr, D., Teufel, S., Bohmian Mechanics. The Physics and Mathematics of Quantum Theory, Springer, 2009.Google Scholar
[17]Folland, G. B., Harmonic analysis in phase space, Princeton University Press, 1989.Google Scholar
[18]Hagedorn, G., A time dependent Born-Oppenheimer approximation, Comm. Math. Phys. 77 (1980), no. 1, 119.CrossRefGoogle Scholar
[19]Hornberger, K., Sipe, J.E., Collisional decoherence reexamined, Phys. Rev. A 68 (2003), 012105, 116.Google Scholar
[20]Hornberger, K., Uttenhaler, S., Brezger, B., Hackermüller, L., Arndt, M., Zeilinger, A., Collisional decoherence observed in matter wave interpherometry, Phys. Rev. Lett., 90 (2003), 160401.Google Scholar
[21]Hornberger, K., Vacchini, B., Monitoring derivation of the quantum linear Boltzmann equation, Phys. Rev. A, 77, (2008), 022112 1–18.CrossRefGoogle Scholar
[22]Joos, E., Zeh, H.D., The emergence of classical properties through interaction with the environment, Z. Phys., B59 (1985), 223–243.Google Scholar
[23]Negulescu, C., Numerical error analysis of a splitting method for the resolution of the anisotropic Schrödinger equation, in preparation.Google Scholar
[24]Omnès, R., The Interpretation of Quantum Mechanics Princeton University Press, Princeton, 1994.Google Scholar
[25]Pazy, A.Semigroups of linear operators and applications to partial differential equations, Springer Verlag, New-York, 1983.Google Scholar
[26]Reed, M., Simon, B.Methods of modern matematical physics, vol. III - Scattering theory, Academic Press, New York, 1979.Google Scholar
[27]Shor, P. W.Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (1995), no. 4, 24932496.Google Scholar
[28]Stafford, C. A., Cardamone, D. M., Mazumadar, S.The quantum interference effect transistor, Nanotechnology 18 (2007), no. 42, 16.Google Scholar
[29]Zhang, W., Konstantinidis, N., Al-Hassanieh, K. A., Dobrovitski, V. V.Modelling decoherence in quantum spin systems, J. Phys. Condens. Matter 19 (2007), no. 8, 128.Google Scholar