Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T21:28:17.319Z Has data issue: false hasContentIssue false

Mean-Field Model Beyond Boltzmann-Enskog Picture for Dense Gases

Published online by Cambridge University Press:  20 August 2015

S. Ansumali*
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Scientific Research, 560064 Bangalore, India
*
*Corresponding author.Email:[email protected]
Get access

Abstract

This work proposes an extension to Boltzmann BGK equation for dense gases. The present model has an H-theorem and it allows choice of the Prandtl number as an independent parameter. I show that similar to Enskog equation this equation can reproduce dynamics of dense gases.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cercignani, C., The Boltzmann Equation and Its Applications, Springer, Berlin, 1988.Google Scholar
[2]Oran, E. S., Oh, C. K., and Cybyk, B. Z., Direct simulation monte carlo: recent advances and applications, An. Rev. Fluid. Mech., 30 (1998), 403441.Google Scholar
[3]Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., and Yakhot, V., Extended Boltzmann kinetic equation for turbulent flows, Science., 301 (2003), 633636.Google Scholar
[4]Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University, 2001.CrossRefGoogle Scholar
[5]Ansumali, S., Karlin, I. V., Arcidiacono, S., Abbas, A., and Prasianakis, N. I., Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett., 98 (2007), 124502.Google Scholar
[6]Gorban, A. N., and Karlin, I. V., General approach to constructing models of the Boltzmann equation, Phys. A., 206 (1994), 401420.CrossRefGoogle Scholar
[7]Ansumali, S., Arcidiacono, S., Chikatamarla, S. S., Prasianakis, N. I., Gorban, A. N., and Karlin, I. V., Quasi-equilibrium lattice Boltzmann method, EuroPhys. J. B., 56 (2007), 135139.Google Scholar
[8]Chapman, S., and Cowling, T. G., The Mathematical Theory of Non-uniform Gases, Cambridge University Press, New York, 1991.Google Scholar
[9] H. van Beijeren, and Ernst, M. H., The modified Enskog equation, Phys., 68 (1973), 437456.Google Scholar
[10]Résibois, P., H-theorem for the (modified) nonlinear Enskog equation, Phys. Rev. Lett., 40 (1978), 14091411.Google Scholar
[11]Alexander, F. J., Garcia, A. L., and Alder, B. J., A consistent Boltzmann algorithm, Phys. Rev. Lett., 74 (1995), 52125215.Google Scholar
[12]Dufty, J. W., Santos, A., and Brey, J. J., Practical kinetic model for hard sphere dynamics, Phys. Rev. Lett., 77 (1996), 12701273.CrossRefGoogle ScholarPubMed
[13]Lutsko, J. F., Approximate solution of the Enskog equation far from equilibrium, Phys. Rev. Lett., 78 (1997), 243246.Google Scholar
[14]Liboff, R. L., Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, Springer, Berlin, 2003.Google Scholar
[15]Luo, L. S., Unified theory of the lattice Boltzmann models for nonideal gases, Phys. Rev. Lett., 81 (1998), 16181621.Google Scholar
[16]Helbing, D., and Molnár, P., Social force model for pedestrian dynamics, Phys. Rev. E., 51 (1995), 42824286.CrossRefGoogle ScholarPubMed
[17]Goldhirsch, I., and Ronis, D., Theory of thermophoresis. I. general considerations and mode-coupling analysis, Phys. Rev. A., 27 (1983), 16161634.Google Scholar
[18]Grmela, M., and Garcia-Colin, L. S., Compatibility of the Enskog kinetic theory with thermodynamics. I, Phys. Rev. A., 22 (1980), 12951304.CrossRefGoogle Scholar
[19]Ottinger, H. C., Beyond Equilibrium Thermodynamics, Wiley-Interscience, Hoboken, NJ 2005.Google Scholar