Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T15:01:21.317Z Has data issue: false hasContentIssue false

Lattice Boltzmann Modeling of Advection-Diffusion-Reaction Equations: Pattern Formation Under Uniform Differential Advection

Published online by Cambridge University Press:  03 June 2015

S. G. Ayodele*
Affiliation:
Max-Planck Institut für, Eisenforschung, Max-Planck Straße 1, 40237, Düsseldorf, Germany
D. Raabe*
Affiliation:
Max-Planck Institut für, Eisenforschung, Max-Planck Straße 1, 40237, Düsseldorf, Germany
F. Varnik*
Affiliation:
Max-Planck Institut für, Eisenforschung, Max-Planck Straße 1, 40237, Düsseldorf, Germany Interdisciplinary Center for Advanced Materials Simulation, Ruhr University Bochum, Stiepeler Straße 129, 44780 Bochum, Germany
*
Corresponding author.Email:[email protected]
Get access

Abstract

A lattice Boltzmann model for the study of advection-diffusion-reaction (ADR) problems is proposed. Via multiscale expansion analysis, we derive from the LB model the resulting macroscopic equations. It is shown that a linear equilibrium distribution is sufficient to produce ADR equations within error terms of the order of the Mach number squared. Furthermore, we study spatially varying structures arising from the interaction of advective transport with a cubic autocatalytic reaction-diffusion process under an imposed uniform flow. While advecting all the present species leads to trivial translation of the Turing patterns, differential advection leads to flow induced instability characterized with traveling stripes with a velocity dependent wave vector parallel to the flow direction. Predictions from a linear stability analysis of the model equations are found to be in line with these observations.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arecchi, F. T., Boccaletti, S., and Ramazza, P., Phys. Rep., 318, 1, (1999).Google Scholar
[2]Wilson, R. E., Phil. Trans. R. Soc. A, 366, 2017 (2008).Google Scholar
[3]Epstein, I. R. and Showalter, K., J. Phys. Chem., 100, 13132 (1996).CrossRefGoogle Scholar
[4]De Wit, A., Adv. Chem. Phys., 109, 435 (1999).Google Scholar
[5]Sagu, F. and Epstein, I. R., Dalton Trans., 1201 (2003).Google Scholar
[6]Murray, J. D., Mathematical Biology: I. An Introduction (2002).Google Scholar
[7]Murray, J. D., Mathematical Biology: II. Spatial Models and Biomedical Applications, (2003).Google Scholar
[8]Epstein, I. R., Proc. Nat. Acad. Sci., 103, 15727 (2006).Google Scholar
[9]Kitsunezaki, S., Physica D, 216, 294 (2006).CrossRefGoogle Scholar
[10]Polezhaev, A. A., Pashkov, R.A., Lobanov, A.I., and Petrov, I.B., Int.J.Dev.Biol., 50, 309 (2006).CrossRefGoogle Scholar
[11]Schiff, S. J., Huang, X., and Wu, J.-Y, Phys. Rev. Lett. 98, 178102 (2007).Google Scholar
[12]Turing, A.M., The chemical basis of morphogenesis, Philos. Trans. R. Soc., 237 (1952).Google Scholar
[13]Nicolis, G. and Prigogine, I., Self-Organization in Nonequilibrium Systems: from Dissipative Structures to Order through Fluctuations, Wiley, New York (1977).Google Scholar
[14]Tabony, J., Glade, N., Demongeot, J. and Papaseit, C., Langmuir, 18, 7196 (2002).CrossRefGoogle Scholar
[15]Andresen, P., Bache, M., Mosekilde, E., Dewel, G., and Borckmanns, P., Phys. Rev. E 60, 297 (1999).Google Scholar
[16]Kærn, M. and Menzinger, M., Phys. Rev. E 60, R3471 (1999).Google Scholar
[17]Kærn, M., Menzinger, M., and Hunding, A., J. Theor. Biol. 207, 473 (2000).Google Scholar
[18]Kærn, M., Menzinger, M., Satnoianu, R., and Hunding, A., Faraday Discuss. 120, 295 (2002).Google Scholar
[19]Boyd, P.W.et al., Nature 407, 695 (2000).Google Scholar
[20]Martin, A.P., Prog. Oceanography 57, 125 (2003).Google Scholar
[21]Bachmann, P.A., Luisi, P.L., and Lang, J., Nature, 357, 57 (1992).Google Scholar
[22]Bedau, M. A., McCaskill, J. S., Packard, N. H., Rasmussen, S., Adami, C., Green, D. G., Artificial Life, 6, 363 (2000).Google Scholar
[23]Pearson, J.E., Science 261, 189 (1993).Google Scholar
[24]Flekkoy, E.G., Phys. Rev. E 47, 4247 (1993).Google Scholar
[25]Xu, A., Gonnella, G., and Lamura, A.Phys. Rev. E 67, 056105 (2003).Google Scholar
[26]Ayodele, S. G., Varnik, F., and Raabe, D., Phys. Rev. E 83, 016702 (2011).Google Scholar
[27]McNamara, G. R. and Zanetti, G., Phys. Rev. Lett. 61, 2332 (1988).Google Scholar
[28]Higuera, F., Succi, S., and Benzi, R., Europhys. Lett. 9, 345 (1989).CrossRefGoogle Scholar
[29]Qian, Y., d’Humieres, D., and Lallemand, P., Europhys. Lett. 17, 479 (1992).Google Scholar
[30]Succi, S., The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford University Press, (2001).Google Scholar
[31]Rubinstein, R., and Luo, L.S., Phys. Rev. E 77, 036709 (2008).Google Scholar
[32]Arcidiacono, S., Karlin, I. V., Mantzaras, J., and Frouzakis, C. E., Phys. Rev. E 76, 046703 (2007).Google Scholar
[33]Arcidiacono, S., Mantzaras, J., and Karlin, I. V., Phys. Rev. E 78, 046711 (2008).Google Scholar
[34]Chapman, S. and Cowling, T. G., “The Mathematical Theory of Non-uniform Gases,” 3rd ed., Cambridge University press, Cambridge (1970).Google Scholar
[35]Wolf-Gladrow, D. A., “Lattice-Gas Cellular Automata and lattice Boltzmann Models”, Lecture Notes in Mathematics 1725, Springer-Verlag, Berlin/Heidelberg (2000).Google Scholar
[36]Chopard, B., Falcone, J.L., and Latt, J., Eur. Phys. J. Special Topics 171, 245 (2009).Google Scholar
[37]Huang, H.-B, Lu, X.-Y and Sukop, M. C., J. Phys. A: Math. Theor. 44, 055001 (2011).Google Scholar
[38]Beck, M., Ghazaryan, A. and Sandstede, B.J. Differential Equations 246, 4371 (2009).Google Scholar
[39]Sherratt, J. A., Proc. R. Soc. A, 467, 3272 (2011).Google Scholar