Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T17:45:37.677Z Has data issue: false hasContentIssue false

Eigenvalue Solver for Fluid and Kinetic Plasma Models in Arbitrary Magnetic Topology

Published online by Cambridge University Press:  22 June 2016

D. A. Baver*
Affiliation:
Lodestar Research Corporation, Boulder Colorado 80301, USA
J. R. Myra*
Affiliation:
Lodestar Research Corporation, Boulder Colorado 80301, USA
M. V. Umansky*
Affiliation:
Lawrence Livermore National Laboratory, USA
*
*Corresponding author. Email addresses:[email protected] (D. A. Baver), [email protected] (J. R. Myra), [email protected] (M. V. Umansky)
*Corresponding author. Email addresses:[email protected] (D. A. Baver), [email protected] (J. R. Myra), [email protected] (M. V. Umansky)
*Corresponding author. Email addresses:[email protected] (D. A. Baver), [email protected] (J. R. Myra), [email protected] (M. V. Umansky)
Get access

Abstract

ArbiTER (Arbitrary Topology Equation Reader) is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models. The primary application area envisioned is boundary plasma physics in magnetic confinement devices; however ArbiTER should be applicable to other science and engineering fields as well. The code permits a variable numbers of dimensions, making possible application to both fluid and kinetic models. The use of specialized equation and topology parsers permits a high degree of flexibility in specifying the physics and geometry.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zeiler, A., Drake, J. F. and Biskamp, D., Phys. Plasmas 4, 991 (1997).Google Scholar
[2] Cohen, B. I., Umansky, M. V., Nevins, W. M., Makowski, M. A., Boedo, J. A., Rudakov, D. L., McKee, G. R., Yan, Z., and Groebner, R. J., Phys. Plasmas 20, 055906 (2013).Google Scholar
[3] Rogers, B. N., Drake, J. F. and Zeiler, A., Phys. Rev. Lett. 81 (1998) 4396.CrossRefGoogle Scholar
[4] Chang, C. S. et al., Journal of Physics: Conference Series 180 (2009) 012057.Google Scholar
[5] Russell, D. A., Myra, J. R. and D?Ippolito, D. A., Phys. Plasmas 16, 122304 (2009).Google Scholar
[6] Halpern, F. D., Ricci, P., Labit, B., Furno, I., Jolliet, S., Loizu, J., Mosetto, A., Arnoux, G., Gunn, J. P., Horacek, J., Kocan, M., LaBombard, B., Silva, C., and JET-EFDA, Nucl. Fusion 53, 122001, (2013).CrossRefGoogle Scholar
[7] Loizu, J., Ricci, P., Halpern, F. D., Jolliet, S. and Mosetto, A., Nucl. Fusion 54, 083033 (2014).Google Scholar
[8] Hallatschek, K., Plasma Phys. Control. Fusion 49, B137 (2007).CrossRefGoogle Scholar
[9] Umansky, M.V., Xu, X.Q., Dudson, B., LoDestro, L.L., Myra, J.R., Comp. Phys. Comm. 180, 887 (2009).CrossRefGoogle Scholar
[10] Garcia, O. E., Naulin, V., Nielsen, A. H., and Rasmussen, J. J., Phys. Plasmas 12, 062309 (2005).Google Scholar
[11] Beyer, P., Benkadda, S., Fuhr-Chaudier, G., Garbet, X., Ghendrih, Ph., Sarazin, Y., Plasma Phys. Control. Fusion 49, 507 (2007).Google Scholar
[12] Guzdar, P., Kleva, R., Groebner, R., and Gohil, P., Phys. Plasmas 11, 1109 (2004).Google Scholar
[13] Ricci, P. and Rogers, B. N., Phys. Plasmas 20, 010702 (2013).Google Scholar
[14] Cohen, R. H., and Xu, X. Q., Contrib. Plasma Phys. 48, 212 (2008).CrossRefGoogle Scholar
[15] Cohen, R. H., LaBombard, B., Ryutov, D. D., Terry, J. L., Umansky, M. V., Xu, X. Q. and Zweben, S., Nucl. Fusion 47, 612 (2007).Google Scholar
[16] Naulin, V., Kendl, A., Garcia, O. E., Nielsen, A. H. and Juul Rasmussen, J., Phys. Plasmas 12, 052515 (2005).Google Scholar
[17] Xu, X. Q., Cohen, R. H., Rognlien, T. D., and Myra, J. R., Phys. Plasmas 7, 1951 (2000).Google Scholar
[18] Xu, X. Q., Nevins, W. M., Rognlien, T. D., Bulmer, R. H., Greenwald, M., Mahdavi, A., Pearlstein, L. D. and Snyder, P., Phys. Plasmas 10, 1773 (2003).CrossRefGoogle Scholar
[19] Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., and Nevins, W. M., Phys. Rev. Lett. 106, 115003 (2011).Google Scholar
[20] Kammerer, M., Merz, F., and Jenko, F., Phys. Plasmas 15, 052102 (2008).CrossRefGoogle Scholar
[21] Roache, P.J., Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, NM (1998).Google Scholar
[22] Oberkampf, W.L. and Trucano, T. G., Progress in Aerospace Sciences 38, 209 (2002).Google Scholar
[23] Baver, D. A., Myra, J. R., Umansky, M. V., Comp. Phys. Comm. 182, 1610 (2011).CrossRefGoogle Scholar
[24] Ryutov, D.D., Phys. Plasmas 14, 064502 (2007).Google Scholar
[25] Strauss, H., Phys. Fluids 24, 2004 (1981).Google Scholar
[26] Hender, T. C., Carreras, B. A., Cooper, W. A., Holmes, J. A., Diamond, P. H., and Similon, P. L., Phys. Fluids 27, 1439 (1984).Google Scholar
[27] Guzdar, P. N. and Drake, J. F., Phys. Fluids B 5, 3712 (1993).Google Scholar
[28] Belli, E. A., Candy, J., Phys. Plasmas 17, 112314 (2010).Google Scholar
[31] Shewchuk, J. R., Delaunay Refinement Algorithms for TriangularMesh Generation, Computational Geometry: Theory and Applications 22(1-3):2174, May 2002.Google Scholar
[32] Connor, J.W. and Taylor, J. B., Phys. Fluids 30, 3180 (1987)Google Scholar