Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T22:08:48.775Z Has data issue: false hasContentIssue false

Efficient Numerical Solution of Dynamical Ginzburg-Landau Equations under the Lorentz Gauge

Published online by Cambridge University Press:  03 May 2017

Huadong Gao*
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
*
*Corresponding author. Email address:[email protected] (H. Gao)
Get access

Abstract

In this paper, a new numerical scheme for the time dependent Ginzburg-Landau (GL) equations under the Lorentz gauge is proposed. We first rewrite the original GL equations into a new mixed formulation, which consists of three parabolic equations for the order parameter ψ, the magnetic field σ=curlA, the electric potential θ=divA and a vector ordinary differential equation for the magnetic potential A, respectively. Then, an efficient fully linearized backward Euler finite element method (FEM) is proposed for the mixed GL system, where conventional Lagrange element method is used in spatial discretization. The new approach offers many advantages on both accuracy and efficiency over existing methods for the GL equations under the Lorentz gauge. Three physical variables ψ, σ and θ can be solved accurately and directly. More importantly, the new approach is well suitable for non-convex superconductors. We present a set of numerical examples to confirm these advantages.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alstrom, T., Sorensen, M., Pedersen, N. and Madsen, S., Magnetic flux lines in complex geometry type-II superconductors studied by the time dependent Ginzburg-Landau equation, Acta Appl. Math., 115(2011), 6374.CrossRefGoogle Scholar
[2] Benzi, M., Golub, G. and Liesen, J., Numerical solution of saddle point problems, Acta Numerica, 14(2005), 1137.Google Scholar
[3] Bethuel, F., Brezis, H. and Hélein, F., Ginzburg-Landau Vortices, Progress in Nonlinear Partial Differential Equations and Their Applications 13, Birkhäuser Boston, Boston, 1994.Google Scholar
[4] Brenner, S. and Scott, L., The Mathematical Theory of Finite Element Methods, Springer, New York, 2002.Google Scholar
[5] Chen, L., Wu, Y., Zhong, L. and Zhou, J., Multigrid preconditioners for mixed finite element methods of vector Laplacian, arXiv:1601.04095.Google Scholar
[6] Chen, Z., Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity, Numer. Math., 76(1997), 323353.Google Scholar
[7] Chen, Z. and Hoffmann, K., Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity, Adv. Math. Sci. Appl., 5(1995), 363389.Google Scholar
[8] Chen, Z., Hoffmann, K. and Liang, J., On a non-stationary Ginzburg-Landau superconductivity model, Math. Methods Appl. Sci., 16(1993), 855875.Google Scholar
[9] Chrysafinos, K. and Hou, L., Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions, SIAM J. Numer. Anal., 40(2002), 282306.Google Scholar
[10] Du, Q., Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity, Comput. Math. Appl., 27(1994), 119133.Google Scholar
[11] Du, Q., Gunzburger, M. and Peterson, J., Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Rev., 34(1992), 5481.Google Scholar
[12] Fleckinger-Pelle, J. and Kaper, H., Gauges for the Ginzburg-Landau equations of superconductivity, Z. Angew. Math. Mech., 76(S2)(1996), 345348.Google Scholar
[13] Frahm, H., Ullah, S. and Dorsey, A., Flux dynamics and the growth of the superconducting phase, Phys. Rev. Lett., 66(1991), 30673070.CrossRefGoogle ScholarPubMed
[14] Gao, H., Li, B. and Sun, W., Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal., 52(2014), 11831202.Google Scholar
[15] Gao, H. and Sun, W., An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity, J. Comput. Phys., 294(2015), 329345.Google Scholar
[16] Gao, H. and Sun, W., A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge. SIAM J. Sci. Comput., 38(2016), A1339A1357.CrossRefGoogle Scholar
[17] Gropp, W., Kaper, H., Leaf, G., Levine, D., Palumbo, M. and Vinokur, V., Numerical simulation of vortex dynamics in type-II superconductors, J. Comput. Phys., 123(1996), 254266.Google Scholar
[18] Gunter, D., Kaper, H. and Leaf, G., Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity, SIAM J. Sci. Comput., 23(2002), 19431958.Google Scholar
[19] Kim, S., Burkardt, J., Gunzburger, M., Peterson, J. and Hu, C., Effects of sample geometry on the dynamics and configurations of vortices in mesoscopic superconductors, Phys. Rev. B, 76(2007), 024509.Google Scholar
[20] Li, B. and Zhang, Z., Mathematical and numerical analysis of time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition, Math. Comp., 86(2017), 15791608.Google Scholar
[21] Li, B. and Zhang, Z., A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations, J. Comput. Phys., 303(2015), 238250.Google Scholar
[22] Logg, A., Mardal, K. and Wells, G. (Eds.), Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin, 2012.Google Scholar
[23] Mu, M., A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model, SIAM J. Sci. Comput., 18(1997), 10281039.Google Scholar
[24] Mu, M. and Huang, Y., An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations, SIAM J. Numer. Anal., 35(1998), 17401761.Google Scholar
[25] Peng, L., Wei, Z. and Xu, D., Vortex states in mesoscopic superconductors with a complex geometry: A finite element analysis, Int. J. Mod. Phys. B, 28(2014), 1450127,CrossRefGoogle Scholar
[26] Raza, N., Sial, S. and Siddiqi, S., Approximating time evolution related to Ginzburg-Landau functionals via Sobolev gradient methods in a finite-element setting, J. Comput. Phys., 229(2010), 16211625.Google Scholar
[27] Richardson, W., Pardhanani, A., Carey, G. and Ardelea, A., Numerical effects in the simulation of Ginzburg-Landau models for superconductivity, Int. J. Numer. Meth. Engng., 59(2004), 12511272.Google Scholar
[28] Yang, C., A linearized Crank-Nicolson-Galerkin FEM for the time-dependent Ginzburg-Landau equations under the temporal gauge, Numer. Methods Partial Differential Equations, 30(2014), 12791290.Google Scholar
[29] Zhang, Y., Sun, Z. and Wang, T., Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numer. Methods Partial Differential Equations, 29(2013), 14871503.Google Scholar