Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T01:36:33.557Z Has data issue: false hasContentIssue false

Computer Simulation of Two Component Dense Plasma by Molecular Dynamics Method

Published online by Cambridge University Press:  03 June 2015

Zh. A. Moldabekov*
Affiliation:
IETP, Al-Farabi Kazakh National University, 71 Al Farabi av., Almaty, 050040 Kazakhstan
T. S. Ramazanov
Affiliation:
IETP, Al-Farabi Kazakh National University, 71 Al Farabi av., Almaty, 050040 Kazakhstan
*
*Corresponding author.Email:[email protected]
Get access

Abstract

In the present work two component dense semiclassical plasma of protons and electrons is considered. Microscopic and electrodynamic properties of the plasma by molecular dynamic simulation are investigated. For these purposes semiclassical interparticle potential which takes into account quantum mechanical diffraction and symmetry effects is used. The considered range of density of plasma is n = 1022cm−3 to n = 1024cm−3. Fluctuations and dynamic dielectric functions were calculated using velocity autocorrelation functions.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Deutsch, C., Maynard, G., Chabot, M., Gardes, D., Della-Negra, S., Bimbot, R., Rivet, M., Fleurier, C., Couillaud, C., Hoffmann, D., Wahl, H., Weyrich, K., Rosme, J., Tahir, N., Jacoby, J., Ogawa, M., Oguri, Y., Hasegawa, J., Sharkov, B., Golubev, A., Fertman, A., Fortov, V., and Mintsev, V., The Open Plasma Physics Journal, 3, 88 (2010).Google Scholar
[2]Nersisyan, H. and Deutsch, C., Laser And Particle Beams, 29, 389 (2011).Google Scholar
[3]Baimbetov, F.B., Bekenov, M.A., and Ramazanov, T.S., Phys. Lett. A, 197, 157 (1995).Google Scholar
[4]Ebeling, W., Kelbg, G., and Sandig, R., Beitr. Plasma Phys., 10, 507 (1970).Google Scholar
[5]Ramazanov, T.S., Dzhumagulova, K.N., and Yu.A. Omarbakiyeva, Phys. Plasmas, 12, 092702 (2005).Google Scholar
[6]Ramazanov, T.S. and Dzhumagulova, K.N., Phys. Plasmas, 9, 3758 (2002).Google Scholar
[7]Baimbetov, F.B., Nurekenov, K.T., and Ramazanov, T.S., Physica A, 226, 181 (1996).CrossRefGoogle Scholar
[8]Moldabekov, Zh.A., Ramazanov, T.S., and Dzhumagulova, K.N., Contrib. Plasma Phys., 52, 207 (2012).Google Scholar
[9]Pokrant, M.A., Broyles, A.A, and Dunn, T., Phys. Rev. A, 10, 379 (1974).Google Scholar
[10]Deutsch, C., Phys. Lett., 60 A, 317 (1977).CrossRefGoogle Scholar
[11]Deutsch, C., Phys. Lett., 66 A, 381 (1978).Google Scholar
[12]Thijssen, J.M., Computational Physiscs (Cambridge University Press, New York, 2007).Google Scholar
[13]Wang, C., He, X.-T. and Zhang, P., Commun. Comput. Phys., 12(4), 1121 (2012).Google Scholar
[14]Ramazanov, T.S., Nigmetova, G.N., Ropke, G., and Redmer, R., J. Plasma Phys., 72, 1031 (2006).CrossRefGoogle Scholar
[15]Baimbetov, F.B., Ramazanov, T.S., Dzhumagulova, K.N.et al., J. Phys. A: Math. Gen., 39, 4521 (2006).Google Scholar
[16]Ramazanov, T.S. and Dzhumagulova, K.N., Contrib. Plasma Phys., 48, 357 (2008).Google Scholar
[17]Ewald, P., Ann. Phys. (Leipzig), 369, 253 (1921).Google Scholar
[18]Parry, D., Surf. Sci., 49, 433 (1975).Google Scholar
[19]Hansen, J.P.et al., Phys. Rev. A, 23, 2041 (1981).Google Scholar
[20]Hansen, J.P.et al., Phys. Rev. A, 24, 1544 (1981).Google Scholar
[21]Baimbetov, F.B. and Ramazanov, T.S., High Temperature, 31, 786 (1993).Google Scholar