Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T21:46:45.111Z Has data issue: false hasContentIssue false

Computer Simulation of Helium Effects in Plutonium During the Aging Process of Self-Radiation Damage

Published online by Cambridge University Press:  20 August 2015

Bingyun Ao*
Affiliation:
National Key Laboratory for Surface Physics and Chemistry, Mianyang, Sichuan 621907, China
Piheng Chen*
Affiliation:
National Key Laboratory for Surface Physics and Chemistry, Mianyang, Sichuan 621907, China
Peng Shi*
Affiliation:
National Key Laboratory for Surface Physics and Chemistry, Mianyang, Sichuan 621907, China
Xiaolin Wang*
Affiliation:
National Key Laboratory for Surface Physics and Chemistry, Mianyang, Sichuan 621907, China
Wangyu Hu*
Affiliation:
Department of Applied Physics, Hunan University, Changsha 410082, China
Liang Wang*
Affiliation:
Department of Applied Physics, Hunan University, Changsha 410082, China
Get access

Abstract

Due to α radioactive decay Pu is vulnerable to aging. The behavior of He in Pu is the foundation for understanding Pu self-radiation damage aging. Molecular dynamics technique is performed to investigate the behavior of defects, the interaction between He and defects, the processes of initial nucleation and growth of He bubble and the dependence of He bubble on the macroscopical properties of Pu. Modified embedded atom method, Morse pair potential and the Lennard-Jones pair potential are used for describing the interactions of Pu-Pu, Pu-He and He-He, respectively. The main calculated results show that He atoms can combine with vacancies to form Hevacancy cluster (i.e., the precursor of He bubble) during the process of self-radiation as a result of high binding energy of an interstitial He atom to vacancy; He bubble’s growth can be dominated by the mechanism of punching out of dislocation loop; the swelling induced by He bubble is very small; grain boundaries give rise to an energetically more favorable zone for the interstitial He atom and self-interstitial atom accumulation than for vacancy accumulation; the process of He release can be identified as the formation of release channel induced by the cracking of He bubble and surface structure.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Jeanloz, R., Science-based stockpile stewardship, Phys. Today, 12 (2000), 4449.Google Scholar
[2]Wolfer, W. G., Radiation effects in plutonium, Los Alamos Sci., 26 (2000), 274285.Google Scholar
[3]Dooley, D., Martinez, B., Olson, D., Olivas, D., Ronquillo, R. and Rising, T., Diffusion of helium in plutonium alloys, in Plutonium Future-The Science 2000 (Pillay, K. K. S. and Kim, K. C., editors), pages 428430, American Institute of Physics, 2000.Google Scholar
[4]Wirth, B. D., Schwartz, A. J., Fluss, M. J., Caturla, M. J., Wall, M. A. and Wolfer, W. G., Fundamental properties of Pu aging, MRS Bull., 26 (2001), 679683.Google Scholar
[5]Schwartz, A. J., Wall, M. A., Zocco, T. G. and Wolfer, W. G., Characterization and modelling of helium bubbles in self-irradiated plutonium alloys, Philos. Mag., 85 (2005), 479488.Google Scholar
[6]Asoka-Kumar, P., Glade, S., Sterne, P. A. and Howell, R., Evolution of defects in Pu during isochronal annealing and self-irradiation, in Plutonium Futures-The Science 2003 (Jarvinen, G. D., editor), pages 121122, American Institute of Physics, 2003.Google Scholar
[7]Thiebaut, C., Baclet, N., Ravat, B., Giraud, P. and Julia, P., Effect of radiation on bulk swelling of plutonium alloys, J. Nucl. Mater., 361 (2007), 184191.CrossRefGoogle Scholar
[8]Valone, S. M., Baskes, M. I., Stan, M., Mitchell, T. E., Lawson, A. C. and Sickafus, K. E., Simulations of low energy cascades in fcc Pu metal at 300K and constant volume, J. Nucl. Mater., 324 (2004), 4151.Google Scholar
[9]Valone, S. M. and Baskes, M. I., Self-irradiation cascade simulations in plutonium metal: model behavior at high energy, J. Computer-Aided Mater. Des., 14 (2007), 357365.Google Scholar
[10]Valone, S. M., Baskes, M. I. and Martin, R. L., Atomistic model of helium bubbles in galliumstabilized plutonium alloys, Phys. Rev. B, 73 (2006), 214209.Google Scholar
[11]Dremov, V., Sapozhnikov, P., Kutepov, A., Anisimov, V., Korotin, M., Shorikov, A., Preston, D. L. and Zocher, M. A., Atomistic simulations of helium dynamics in a plutonium lattice, Phys. Rev. B, 77 (2008), 224306.Google Scholar
[12]Ao, B. Y., Yang, J. Y., Wang, X. L. and Hu, W. Y., Atomistic behavior of helium-vacancy clusters in aluminum, J. Nucl. Mater., 350 (2006), 8388.CrossRefGoogle Scholar
[13]Ao, B. Y., Wang, X. L., Hu, W. Y., Yang, J. Y. and Xia, J. X., Atomistic study of small helium bubbles in plutonium, J. Alloys Comp., 444-445 (2007), 300304.Google Scholar
[14]Ao, B. Y., Wang, X. L., Hu, W. Y. and Yang, J. Y., Molecular dynamics simulation of helium-vacancy interaction in plutonium, J. Nucl. Mater., 385 (2009), 7578.Google Scholar
[15]Daw, M. S. and Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces and other defects in metals, Phys. Rev. B, 29 (1984), 64436453.Google Scholar
[16]Baskes, M. I., Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B, 46 (1992), 27272742.Google Scholar
[17]Ouyang, Y., Zhang, B., Liao, S. and Jin, Z., A simple analytical EAM model for bcc metals including Cr and its application, Z. Phys. B, 101 (1996), 161168.Google Scholar
[18]Deng, H., Hu, W., Shu, X. and Zhang, B., Atomistic simulation of the segregation profiles in Mo-Re random alloys, Surf. Sci., 543 (2003), 95102.Google Scholar
[19]Yang, J., Hu, W., Deng, H. and Zhao, D., Temperature dependence of atomic relaxation and vibrations for the vicinal Ni(9 7 7) surface: a molecular dynamics study, Surf. Sci., 572 (2004), 439448.Google Scholar
[20]Hu, W., Zhang, B., Huang, B., Gao, F. and Bacon, D. J., Analytic modified embedded atom potentials for HCP metals, J. Phys. Conden. Matter, 13 (2001), 1193.Google Scholar
[21]Hu, W., Deng, H. and Fukumoto, M., Point-defect properties in HCP rare earth metals with analytic modified embedded atom potentials, Euro. Phys. J. B, 34 (2003), 429440.CrossRefGoogle Scholar
[22]Hu, W., Shu, X. andZhang, B., Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials, Comput. Mater. Sci., 23 (2002), 175189.Google Scholar
[23]Hu, W. and Fukumoto, M., The application of the analytic embedded atom potential to alkali metal, Modell. Simula. Mater. Sci., 10 (2002), 707726.Google Scholar
[24]Johnson, R. A., Phase stability of fcc alloys with the embedded-atom method, Phys. Rev. B, 41 (1990), 97179720.Google Scholar
[25]Pochet, P., Modeling of aging in plutonium by molecular dynamics, Nucl. Instr. Meth. Phys. Res. B, 202 (2003), 8287.Google Scholar
[26]Baskes, M. I., Atomistic model of plutonium, Phys. Rev. B, 62 (2000), 1553215537.CrossRefGoogle Scholar
[27]Dai, X., Savrasov, S. Y., Kotliar, G., Migliori, A., Ledbetter, H. and Abrahams, E., Calculated phonon spectra of plutonium at high temperatures, Science, 300 (2003), 953955.CrossRefGoogle ScholarPubMed
[28]Cherne, F. J., Baskes, M. I. and Holian, B. L., Predicted transport properties of liquid plutonium, Phys. Rev. B, 67 (2003), 092104.Google Scholar
[29]Fluss, M. J., Wirth, B. D., Wall, M., Felter, T. E., Caturla, M. J., Kubota, A. and Diaz de la Rubia, T., Temperature-dependent defect properties from ion-irradiation in Pu (Ga), J. Alloys Comp., 368 (2004), 6274.CrossRefGoogle Scholar
[30]Baskes, M. I., Muralidharan, K., Stan, M., Valone, S. M. and Cherne, F. J., Using the modified embedded-atom method to calculate the properties of Pu-Ga alloys, JOM, 9 (2003), 4150.Google Scholar
[31]Wong, J., Krisch, M., Farber, D. L., Occelli, F., Schwartz, A. J., Chiang, T. C., Wall, M., Boro, C. and Xu, R., Phonon dispersions of fcc δ-Plutonium-Gallium by inelastic X-ray scattering, Science, 301 (2003), 10781080.Google Scholar
[32]Johnson, R. A., Empirical potentials and their use in the calculation of energies of point defects in metals, J. Phys. F: Metal Phys., 3 (1973), 295.Google Scholar
[33]Baskes, M. I. and Melius, C. F., Pair potentials for fcc metals, Phys. Rev. B, 20 (1979), 31973204.CrossRefGoogle Scholar
[34]Valone, S. M., Baskes, M. I. and Martin, R. L., LA-UR-02-1958, Los Alamos National Laboratory, 2002.Google Scholar
[35]Chen, P. H., Wang, X. L., Lai, X. C., Li, G., Ao, B. Y. and Long, Y., Ab initio interionic potentials for UN by multiple lattice inversion, J. Nucl. Mater., 404 (2010), 68.Google Scholar
[36]Chen, P. H., Lai, X. C., Liu, K. Z., Wang, X. L., Bai, B., Ao, B. Y. and Long, Y., Development of a pair potential for Fe-He by lattice inversion, J. Nucl. Mater., 405 (2010), 156159.Google Scholar
[37]Trinkaus, H., Radiation effects and defects in solids, Radiat. Eff., 78 (1983), 189211.Google Scholar
[38]Morishita, K., Sugano, R. and Wirth, B. D., MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe, J. Nucl. Mater., 323 (2003), 243250.CrossRefGoogle Scholar
[39]Adams, J. B. and Wolfer, W. G., Formation energies of helium-void complexes in nickel, J. Nucl. Mater., 166 (1989), 235242.Google Scholar
[40]Parrinello, M. and Rahman, A., Crystal structure and pair potentials: a molecular-dynamics study, Phys. Rev. Lett., 45 (1980), 11961199.Google Scholar
[41]Trinkaus, H. and Singh, B. N., Helium accumulation in metals during irradiation-where do we stand?, J. Nucl. Mater., 323 (2003), 229242.Google Scholar
[42]Xia, J., Hu, W., Yang, J., Ao, B. and Wang, X., A comparative study of helium atom diffusion via an interstitial mechanism in nickel and palladium, Phys. Stat. Sol., 243 (2006), 579583.Google Scholar
[43]Adams, A. B. and Wolfer, W.G., On the diffusion mechanisms of helium in nickel, J. Nucl. Mater., 158 (1988), 2529.Google Scholar
[44]Zocco, T. G., Transmission electron microscopy of plutonium alloys, Los Almos Sci., 26 (2000), 286289.Google Scholar
[45]Baskes, M. I. and Vitek, V., Trapping of hydrogen and helium at grain boundaries in nickel: an atomistic study, Met. Trans. A, 16 (1985), 16251631.Google Scholar
[46]Kurtz, R. J. and Heinisch, H. L., The effects of grain baundary structure on binding of He in Fe, J. Nucl. Mater., 329-333 (2004), 11991203.Google Scholar
[47]Wolfer, W. G., The pressure for dislocation loop punching by a single bubble, Phil. Mag. A, 58 (1988), 285297.Google Scholar
[48]Spulak, R. G., On helium release from metal tritides, J. Less-Common. Metals, 132 (1987), L17L20.CrossRefGoogle Scholar
[49]Camp, W. J., Helium detrapping and release from metal tritides, J. Vac. Sci. Tech., 14 (1977), 514517.Google Scholar
[50]Snow, C. S. and Brewer, L. N., Helium release and microstructural changes in Er(D,T)2-x3 Hex films, J. Nucl. Mater., 374 (2008), 147157.Google Scholar