Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T11:43:06.932Z Has data issue: false hasContentIssue false

Computational Study of Interstitial Hydrogen Atoms in Nano-Diamond Grains Embedded in an Amorphous Carbon Shell

Published online by Cambridge University Press:  20 August 2015

Amihai Silverman
Affiliation:
Taub Computer Center, Technion-IIT, Haifa 32000, Israel
Alon Hoffman
Affiliation:
Schulich Faculty of Chemistry, Technion-IIT, Haifa 32000, Israel
Joan Adler*
Affiliation:
Department of Physics, Technion-IIT, Haifa 32000, Israel
*
*Corresponding author.Email:[email protected]
Get access

Abstract

The properties of hydrogen atoms in a nano-diamond grain surrounded by an amorphous carbon shell are studied with Tight Binding computer simulations. Our samples model nano-diamond grains, of a few nanometers in size, that nucleate within an amorphous carbon matrix, as observed in deposition from a hydrocarbon rich plasma. The calculations show that the average hydrogen interstitial formation energy in the amorphous region is lower than in the nano-diamond core, therefore hydrogen interstitial sites in the in the amorphous region are more stable than in the nano-diamond core. This formation energy difference is the driving force for the diffusion of hydrogen atoms from nano-diamond grains into amorphous carbon regions. An energy well was observed on the amorphous side of the nano-diamond amorphous carbon interface: hydrogen atoms are expected to be trapped here. This scenario agrees with experimental results which show that hydrogen retention of diamond films increases with decreasing grain size, and suggest that hydrogen is bonded and trapped in nano-diamond grain boundaries and on internal grain surfaces.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Michaelson, Sh., Ternyak, O., Hoffman, A. and Lifshitz, Y., Correlation between diamond grain size and hydrogen retention in diamond films studied by scanning electron microscopy and secondary ion mass spectroscopy, Appl. Phys. Lett., 90 (2007), 031914.Google Scholar
[2]Michaelson, Sh., Ternyak, O., Akhvlediani, R., Williams, O. A., Gruen, D. and Hoffman, A., Hydrogen concentration and bonding in nano-diamond films of varying grain sizes grown by different chemical vapor deposition methods, Phys. Stat. Sol., 204 (2007), 28602867.Google Scholar
[3]Michaelson, Sh., Ternyak, O., Akhvlediani, R., Hoffman, A., Lafosse, A., Azria, R., Williams, O. A. and Gruen, D. M., Hydrogen concentration and bonding configuration in poly-crystalline diamond films: from micro-to nanometric grain size, J. Appl. Phys., 102 (2007), 113516.Google Scholar
[4]Lifshitz, Y., Meng, X. M., Lee, S. T., Akhvlediani, R. and Hoffman, A., Visualization of diamond nucleation and growth from energetic species, Phys. Rev. Lett., 93 (2004), 056101.Google Scholar
[5]Hoffman, A., Heiman, A., Akhvlediani, R., Lakin, E., Zolotoyabko, E. and Cytermann, C., Hydrogen content and density in nanocrystalline films of a predominant diamond character, J. Appl. Phys., 94 (2003), 45894595.Google Scholar
[6]Michaelson, Sh., Ternyak, O., Hoffman, A. and Lifshitz, Y., Correlation between diamond grain size and hydrogen retention in diamond films studied by scanning electron microscopy and secondary ion mass spectroscopy, Appl. Phys. Lett., 90 (2007), 031914.CrossRefGoogle Scholar
[7]Ito, A. and Nakamura, H., Molecular dynamics simulation of bombardment of hydrogen atoms on graphite surface, Commun. Comput. Phys., 4 (2008), 592610.Google Scholar
[8]Frauenheim, Th., Weich, F., Kohler, Th., Uhlmann, S., Porezag, D. and Seifert, G., Density-functional-based construction of transferable nonorthogonal tight-binding potentials for Si and SiH, Phys. Rev. B., 52 (1995), 1149211501.Google Scholar
[9]The Frauenheims Tight Binding (FTB) method is based on a second-order expansion of the Kohn-Sham total energy in density-functional theory [Kohn, W. and Sham, L. J., Phys. Rev., 140, (1965), A1133–A1138] with respect to charge density fluctuations. The zeroth order approach is equivalent to a common standard non-self-consistent tight-binding scheme, while at second order a transparent, parameter-free, and readily calculable expression for generalized Hamiltonian matrix elements is derived. The final approximate Kohn-Sham energy additionally includes a Coulomb interaction between charge fluctuations.Google Scholar
[10]Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S. and Seifert, G., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B., 58 (1998), 72607268.CrossRefGoogle Scholar
[11]Kohn, W. and Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, (1965), A1133–A1138.Google Scholar
[12]Car, R. and Parrinello, M., Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55 (1985), 24712474.CrossRefGoogle ScholarPubMed
[13]Fraunheim, Th., Blaudek, P., Stephan, U. and Jungnikel, G., Atomic structure and physical properties of amorphous carbon and its hydrogenated analogs, Phys. Rev. B., 48 (1993), 48234834;Google Scholar
Frauenheim, Th., Jungnickel, G., Kohler, Th. and Stephan, U., Structure and electronic properties of amorphous carbon: from semimetallic to insulating behaviour, J. Non-Cryst. Solids., 182 (1992), 186197.Google Scholar
[14]Stillinger, F. and Weber, T. A., Computer simulation of local order in condensed phases of silicon, Phys. Rev. B., 31 (1985), 52625271.Google Scholar
[15]Barnard, A. S. and Russo, S. P., Development of an improved stillinger-weber potential for tetrahedral carbon using ab-initio (Hartree-Fock and MP2) methods, Mol. Phys., 100(10) (2002), 15171525.Google Scholar
[16]Silverman, A., Adler, J. and Weil, R., Computer modelling of the diffusion mechanisms of fluorine in amorphous silicon, Thin. Solid. Films., 193/194 (1990), 571576.Google Scholar
[17]Zallen, Richard, The Physics of Amorphous Solids, Wiley-Interscience, New York, 1983.Google Scholar
[18]Sorkin, A., Adler, J. and Kalish, R., Computer simulations of damage due to passage of a heavy fast ion through diamond, Phys. Rev. B., 70 (2004), 064110.Google Scholar
[19]Kopidakis, G., Remediakis, I. N., Fyta, M. G. and Kelires, P. C., Atomic and electronic structure of crystalline-amorphous carbon interfaces, Diam. Relat. Mater., 16 (2007), 18751881.Google Scholar
[20]Michaelson, Sh., Akhvlediani, R., Hoffman, A., Silverman, A. and Adler, J., Hydrogen in nano-diamond films: experimental and computational studies, Phys. Stat. Sol., 205 (2008), 2099–2107.Google Scholar
[21]Parrinello, M. and Rahman, A., Crystal structure and pair potentials: a molecular-dynamics study, Phys. Rev. Lett., 45 (1980), 11961199.CrossRefGoogle Scholar
[22]Parrinello, M. and Rahman, A., A polymorphic transitions in single-crystals: a new molecular dynamics method, J. Appl. Phys., 52 (1981), 7158.Google Scholar
[23]Saada, D., Adler, J. and Kalish, R., Computer simulation of damage in diamond due to ion impact and its annealing, Phys. Rev. B., 59 (1999), 66506660.CrossRefGoogle Scholar
[24]Horsfield, A. P., Efficient ab initio tight binding, Phys. Rev. B., 56 (1997), 65946602.CrossRefGoogle Scholar
[25]Horsfield, A. P. and Bratkovsky, A. M., Ab initio tight binding, J. Phys. Condens. Mat., 12 (2000), R1.Google Scholar
[26]Press, William H., Teukolsky, Saul A., William Vetterling, T. and Flannery, Brian P., Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, 2007.Google Scholar
[27]Adler, J., Fox, J., Kalish, R., Mutat, T., Sorkin, A. and Warszawski, E., The essential role of visualization for modeling nanotubes and nanodiamond, Comput. Phys. Commun., 177 (2007), 1920.Google Scholar
[28]Stohr, Joachim, NEXAFS Spectroscopy (Springer Series in Surface Sciences), Springer, 2003.Google Scholar
[29]Warszawski, E., Hoffman, A., Silverman, A. and Adler, J., Experiment (NEXAFS) versus simulation (DOS) for carbon allotropes, Bulletin of the Israel Physical Society, 52 (2006), 38; and to appear in Computer Physics Communications.Google Scholar
[30]Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Microscopic structure of tetrahedral amorphous carbon, Phys. Rev. Lett., 76 (1996), 768771.Google Scholar
[31]Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Ab initio simulations of tetrahedral amorphous carbon, Phys. Rev. B., 54 (1996), 97039714.CrossRefGoogle ScholarPubMed
[32]McCulloch, D. G., McKenzie, D. R. and Goringe, C. M., Ab initio simulations of the structure of amorphous carbon, Phys. Rev. B., 61 (2000), 23492355.CrossRefGoogle Scholar
[33]Hoffman, A., Petravic, M., Comtet, G., Heurtel, A., Hellner, L. and Dujardin, G., Photon-stimulated desorption of H+ and H- ions from diamond surfaces: evidence for direct and indirect processes, Phys. Rev. B., 59 (1999), 32033209.Google Scholar
[34]Saada, D., Adler, J. and Kalish, R., Lowest-energy site for hydrogen in diamond, Phys. Rev B., 61 (1999), 1071110715.CrossRefGoogle Scholar
[35]Goss, J. P., Jones, R., Heggie, M. I., Ewels, C. P., Briddon, P. R. and Oberg, S., First principles studies of H in diamond, Phys. Stat. Sol. A., 186 (2001), 263268.Google Scholar
[36]Goss, J. P., Jones, R., Heggie, M. I., Ewels, C. P., Briddon, P. R. and Oberg, S., Theory of hydrogen in diamond, Phys. Rev. B., 65 (2002), 115207115220.Google Scholar
[37]Kaukonen, M., Peräjoki, J., Nieminen, R. M., Jungnickel, G. and Frauenheim, Th., Locally activated monte carlo method for long-time-scale simulations, Phys. Rev. B., 61 (2000), 980987.Google Scholar
[38]Nishimatsu, T., Ab initio study of donor-hydrogen complexes for low-resistivity n-type diamond semiconductor, Jpn. J. Appl. Phys., 41 (2002), 19521962.Google Scholar
[39]Herrero, C. P. and Ramirez, R., Diffusion of muonium and hydrogen in diamond, Phys. Rev. Lett., 99 (2007), 205504205508.Google Scholar
[40]Briddon, P., Jones, R. and Lister, G. M. S., Hydrogen in diamond, J. Phys. C., 21 (1988), L1027–L1031.Google Scholar
[41]Heggie, M. I., Ewels, C. P., Martsinovich, N., Scarle, S., Jones, R., Goss, J. P., Hourahine, B. and Briddon, P. R., Glide dislocations in diamond: first-principles calculations of similarities with and differences from silicon and the effects of hydrogen, J. Phys. Cond. Matt., 14, (2002), 1268912696;Google Scholar
Goss, J. P., Briddon, P. R., Sque, S. J. and Jones, R., Boron-hydrogen complexes in diamond, Phys. Rev. B., 69 (2004), 165215165223.Google Scholar
[42]Mehandru, S. P., Anderson, A. B. and Angus, J. C., Hydrogen binding and diffusion in diamond, J. Mater. Res., 7 (1992), 689695.Google Scholar
[43]Chu, C. H. and Estreicher, S. K., Similarities, differences, and trends in the properties of interstitial H in cubic C, Si, BN, BP, AlP, and SiC, Phys. Rev. B., 42 (1990), 94869495.Google Scholar
[44]Conway, N. M. J., Ilie, A., Robertson, J., Milne, W. I. and Tagliaferro, A., Reduction in defect density by annealing in hydrogenated tetrahedral amorphous carbon, Appl. Phys. Lett., 73 (1998), 24562459.Google Scholar
[45]von Keudell, A., Meier, M. and Hopf, C., Growth mechanism of amorphous hydrogenated carbon, Diam. Relat. Mater., 11 (2002), 969975.Google Scholar
[46]Talbot-Ponsonby, D. F., Newton, M. E., Baker, J. M., Scarsbrook, G. A., Sussmann, R. S., Whitehead, A. J. and Pfenninge, S., Multifrequency EPR, 1H ENDOR, and saturation recovery of paramagnetic defects in diamond films grown by chemical vapor deposition, Phys. Rev. B., 57 (1998), 22642270.Google Scholar