Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Neale, Christopher M. U.
Maltese, Antonino
Altaf, Muhammad U.
Jana, Raghavendra B.
Hoteit, Ibrahim
and
McCabe, Matthew F.
2016.
Continuous data assimilation for downscaling large-footprint soil moisture retrievals.
Vol. 9998,
Issue. ,
p.
99981O.
Foias, Ciprian
Mondaini, Cecilia F.
and
Titi, Edriss S.
2016.
A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier--Stokes Equations and Their Statistics.
SIAM Journal on Applied Dynamical Systems,
Vol. 15,
Issue. 4,
p.
2109.
Farhat, Aseel
Lunasin, Evelyn
and
Titi, Edriss S.
2017.
Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone.
Journal of Nonlinear Science,
Vol. 27,
Issue. 3,
p.
1065.
Jolly, Michael S.
Martinez, Vincent R.
and
Titi, Edriss S.
2017.
A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation.
Advanced Nonlinear Studies,
Vol. 17,
Issue. 1,
p.
167.
Biswas, Animikh
and
Martinez, Vincent R.
2017.
Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations.
Nonlinear Analysis: Real World Applications,
Vol. 35,
Issue. ,
p.
132.
Altaf, M. U.
Titi, E. S.
Gebrael, T.
Knio, O. M.
Zhao, L.
McCabe, M. F.
and
Hoteit, I.
2017.
Downscaling the 2D Bénard convection equations using continuous data assimilation.
Computational Geosciences,
Vol. 21,
Issue. 3,
p.
393.
Foias, Ciprian
Jolly, Michael S.
Lithio, Dan
and
Titi, Edriss S.
2017.
One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations.
Journal of Nonlinear Science,
Vol. 27,
Issue. 5,
p.
1513.
Biswas, Animikh
Hudson, Joshua
Larios, Adam
and
Pei, Yuan
2018.
Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields.
Asymptotic Analysis,
Vol. 108,
Issue. 1-2,
p.
1.
Boďová, Katarína
Haskovec, Jan
and
Markowich, Peter
2018.
Well posedness and maximum entropy approximation for the dynamics of quantitative traits.
Physica D: Nonlinear Phenomena,
Vol. 376-377,
Issue. ,
p.
108.
Mondaini, Cecilia F.
and
Titi, Edriss S.
2018.
Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm.
SIAM Journal on Numerical Analysis,
Vol. 56,
Issue. 1,
p.
78.
Frank, Jason
and
Zhuk, Sergiy
2018.
A detectability criterion and data assimilation for nonlinear differential equations.
Nonlinearity,
Vol. 31,
Issue. 11,
p.
5235.
Clark Di Leoni, Patricio
Mazzino, Andrea
and
Biferale, Luca
2018.
Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging.
Physical Review Fluids,
Vol. 3,
Issue. 10,
Blocher, Jordan
Martinez, Vincent R.
and
Olson, Eric
2018.
Data assimilation using noisy time-averaged measurements.
Physica D: Nonlinear Phenomena,
Vol. 376-377,
Issue. ,
p.
49.
Farhat, Aseel
Johnston, Hans
Jolly, Michael
and
Titi, Edriss S.
2018.
Assimilation of Nearly Turbulent Rayleigh–Bénard Flow Through Vorticity or Local Circulation Measurements: A Computational Study.
Journal of Scientific Computing,
Vol. 77,
Issue. 3,
p.
1519.
Desamsetti, Srinivas
Dasari, Hari Prasad
Langodan, Sabique
Titi, Edriss S.
Knio, Omar
and
Hoteit, Ibrahim
2019.
Efficient dynamical downscaling of general circulation models using continuous data assimilation.
Quarterly Journal of the Royal Meteorological Society,
Vol. 145,
Issue. 724,
p.
3175.
Mondaini, Cecilia F.
Titi, Edriss S.
Biswas, Animikh
and
Foias, Ciprian
2019.
Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations.
Annales de l'Institut Henri Poincaré C, Analyse non linéaire,
Vol. 36,
Issue. 2,
p.
295.
Larios, Adam
Rebholz, Leo G.
and
Zerfas, Camille
2019.
Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations.
Computer Methods in Applied Mechanics and Engineering,
Vol. 345,
Issue. ,
p.
1077.
Celik, Emine
Olson, Eric
and
Titi, Edriss S.
2019.
Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm.
SIAM Journal on Applied Dynamical Systems,
Vol. 18,
Issue. 2,
p.
1118.
Carlson, Elizabeth
Hudson, Joshua
and
Larios, Adam
2020.
Parameter Recovery for the 2 Dimensional Navier--Stokes Equations via Continuous Data Assimilation.
SIAM Journal on Scientific Computing,
Vol. 42,
Issue. 1,
p.
A250.
Olson, Eric
2020.
Stochastic parameterization of the time-relaxation model of turbulence.
Results in Applied Mathematics,
Vol. 8,
Issue. ,
p.
100114.