Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:10:35.376Z Has data issue: false hasContentIssue false

A Charge Preserving Scheme for the Numerical Resolution of the Vlasov-Ampère Equations

Published online by Cambridge University Press:  20 August 2015

Nicolas Crouseilles*
Affiliation:
INRIA-Nancy-Grand Est, CALVI Project, Strasbourg, France
Thomas Respaud
Affiliation:
IRMA, Universitè de Strasbourg and INRIA-Nancy-Grand Est, CALVI Project, Strasbourg, France
*
*Corresponding author.Email:[email protected]
Get access

Abstract

In this report, a charge preserving numerical resolution of the 1D Vlasov-Ampère equation is achieved, with a forward Semi-Lagrangian method introduced in [10]. The Vlasov equation belongs to the kinetic way of simulating plasmas evolution, and is coupled with the Poisson’s equation, or equivalently under charge conservation, the Ampère’s one, which self-consistently rules the electric field evolution. In order to ensure having proper physical solutions, it is necessary that the scheme preserves charge numerically. B-spline deposition will be used for the interpolation step. The solving of the characteristics will be made with a Runge-Kutta 2 method and with a Cauchy-Kovalevsky procedure.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barthelmé, R., Le problème de Conservation de la Charge dans le Couplage des Equations de Vlasov et de Maxwell, Thèse de l’Universitè Louis Pasteur, 2005.Google Scholar
[2]Bostan, M. and Crouseilles, N., Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell sytem for laser-plasma interaction, Numer. Math., 112 (2009), 169–195.Google Scholar
[3]Birdsall, C. K. and Langdon, A. B., Plasma Physics via Computer Simulation, Inst. of Phys. Publishing, Bristol/Philadelphia, 1991.Google Scholar
[4]Bouchut, F., Golse, F. and Pulvirenti, M., Kinetic Equations and Asymptotic Theory, Series in Applied Math, Ciarlet, P. G and Lions, P. L (Eds), Gauthier Villars, 2008.Google Scholar
[5]Carrillo, J. A. and Labrunie, S., Global solutions for the one-dimensional Vlasov-Maxwell system for laser-plasma interaction, Math. Model. Methods. Appl. Sci., 16 (2006), 19–57.CrossRefGoogle Scholar
[6]Carrillo, J.-A. and Vecil, F., Non oscillatory interpolation methods applied to Vlasov-based models, SIAM J. Sci. Comput., 29 (2007), 1179–1206.CrossRefGoogle Scholar
[7]Cheng, C. Z. and Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), 330–3351.Google Scholar
[8]Colella, P. and Woodward, P. R., The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54 (1984), 174–201.Google Scholar
[9]Crouseilles, N., Mehrenberger, M. and Sonnendrücker, E., Conservative semi-Lagrangian schemes for the Vlasov equation, J. Comput. Phys., 229 (2010), 1927–1953.Google Scholar
[10]Crouseilles, N., Respaud, T. and Sonnendrucker, E., A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Comput. Phys. Commun., 180 (2009), 1730–1745.Google Scholar
[11]Crouseilles, N., Ghizzo, A. and Salmon, S., Vlasov laser-plasma interaction simulations with a moving grid, INRIA Research Report, No. 6109, 2007.Google Scholar
[12]Cotter, C. J., Frank, J. and Reich, S., The remapped particle-mesh semi-Lagrangian advection scheme, Q. J. Meteorol. Soc., 133 (2007), 251–260.Google Scholar
[13]Eastwood, J. W., Virtual particle methods, Comput. Phys. Commun., 64(2) (1991), 252–266.CrossRefGoogle Scholar
[14]Elkina, N. V. and Buchner, J., A new conservative unsplit method for the solution of the Vlasov equation, J. Comput. Phys., 213 (2006), 862–875.Google Scholar
[15]Zh, T.. Esirkepov, Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Comput. Phys. Commun., 135 (2001), 144–153.Google Scholar
[16]Filbet, F., Sonnendrücker, E. and Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), 166–187.CrossRefGoogle Scholar
[17]Filbet, F. and Sonnendrücker, E., Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 151 (2003), 247–266.Google Scholar
[18]Ghizzo, A., Bertrand, P., Begue, M. L., Johnston, T. W. and Shoucri, M., A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator, IEEE Trans. Plasma. Sci., 24 (1996), 370–378.Google Scholar
[19]Ghizzo, A., Bertrand, P., Shoucri, M., Johnston, T. W., Fijalkow, E. and Feix, M. R., A Vlasov code for the numerical simulation of stimulated Raman scattering, J. Comput. Phys., 90 (1990), 431–457.CrossRefGoogle Scholar
[20]Grandgirard, V., Brunetti, M., Bertrand, P., Besse, N., Garbet, X., Ghendrih, P., Manfredi, G., Sarrazin, Y., Sauter, O., Sonnendrücker, E., Vaclavik, J. and Villard, L., A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395–423.Google Scholar
[21]Huot, F., Ghizzo, A., Bertrand, P., Sonnendrücker, E. and Coulaud, O., Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system, J. Comput. Phys., 185 (2003), 512–531.CrossRefGoogle Scholar
[22]Huot, F., Ghizzo, A., Bertrand, P., Sonnendrücker, E. and Coulaud, O., Study of a propagation of ultraintense electromagnetic wave through plasma using semi-Lagrangian Vlasov codes, IEEE Trans. Plasma. Sci., 28 (2000), 1209–1223.CrossRefGoogle Scholar
[23]Johnston, T. W., Bertrand, P., Ghizzo, A., Shoucri, M., Fijalkow, E. and Feix, M. R., Simulated Raman scattering: action evolution and particle trapping via Euler-Vlasov, fluid simulation, Phys. Fluids. B., (1992), 2523–2537.Google Scholar
[24]Marder, B., A method for incorporating Gauss’s law into electromagnetic PIC codes, J. Comput. Phys., 68 (1987), 48–55.Google Scholar
[25]Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E. and Voss, U., Divergence correction techniques for Maxwell solversbased on a hyperbolic model, J. Comput. Phys., 161(2) (2000), 484–511.Google Scholar
[26]Nakamura, T. and Yabe, T., Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 120 (1999), 122–154.CrossRefGoogle Scholar
[27]Pohn, E., Shoucri, M. and Kamelander, M., Study of the formation of a charge separation at a plasma edge, part I: the numerical integration of a Vlasov equation possessing an invariant, Comput. Phys. Commun., 137 (2001), 380–395.Google Scholar
[28]Reich, S., An explicit and conservative remapping strategy for semi-Lagrangian advection, Atmo. Sci. Lett., 8 (2007), 58–63.Google Scholar
[29]Respaud, T. and Sonnendrücker, E., Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations, HAL: hal-00442957, submitted.Google Scholar
[30]Sircombe, N. J. and Arber, T. D., VALIS: A split-conservative scheme for the relativistic 2D, J. Comput. Phys., 228 (2009), 4773–4788.Google Scholar
[31]Shoucri, M., A two-level implicit scheme for the numerical solution of the linearized vorticity equation, Int. J. Numer. Meth. Eng., 17 (1981), 1525–1538.Google Scholar
[32]Shoucri, M., Nonlinear evolution of the bump-on-tail instability, Phys. Fluids., 22 (1979), 2038–2039.Google Scholar
[33]Schmitz, H. and Grauer, R., Comparison of time splitting and backsubstitution methods for integrating Vlasov equation with magnetic fields, Comput. Phys. Commun., 175 (2006), 86–92.Google Scholar
[34]Sonnendrücker, E., Roche, J., Bertrand, P. and Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), 201–220.Google Scholar
[35]Umeda, T., Omura, Y., Tominaga, T. and Matsumoto, H., A new charge conservation method in electromagnetic particle-in-cell simulations, Comput. Phys. Commun., 156(1) (2003), 73–85.Google Scholar
[36]Villasenor, J. and Buneman, O., Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 69 (1992), 306–316.Google Scholar
[37]Zerroukat, M., Wood, N. and Staniforth, A., A monotonic and positive-definite filter for a Semi-Lagrangian inherently conserving and efficient (SLICE) scheme, Q. J. R. Meteorol. Soc., 131 (2005), 2923–2936.Google Scholar
[38]Zerroukat, M., Wood, N. and Staniforth, A., The Parabolic Spline Method (PSM) for conservative transport problems, Int. J. Numer. Meth. Fluids., 51 (2006), 1297–1318.Google Scholar