Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:20:49.049Z Has data issue: false hasContentIssue false

Asymptotic-Preserving Scheme for the M1-Maxwell System in the Quasi-Neutral Regime

Published online by Cambridge University Press:  01 February 2016

S. Guisset*
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, F-33405 Talence, France Univ. Bordeaux, CELIA, UMR 5107, F- 33400 Talence, France
S. Brull
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, F-33405 Talence, France
B. Dubroca
Affiliation:
Univ. Bordeaux, CELIA, UMR 5107, F- 33400 Talence, France
E. d'Humières
Affiliation:
Univ. Bordeaux, CELIA, UMR 5107, F- 33400 Talence, France
S. Karpov
Affiliation:
Keldysh Institute for Applied Mathematics, 125047 Moscow, Russian Federation
I. Potapenko
Affiliation:
Keldysh Institute for Applied Mathematics, 125047 Moscow, Russian Federation
*
*Corresponding author. Email address:[email protected] (S. Guisset)
Get access

Abstract

This work deals with the numerical resolution of the M1-Maxwell system in the quasi-neutral regime. In this regime the stiffness of the stability constraints of classical schemes causes huge calculation times. That is why we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving scheme in different regimes. The first one corresponds to a regime where electromagnetic effects are predominant. The second one on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral regime. In the latter case the illustrative simulations are compared with kinetic and hydrodynamic numerical results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Batishchev, O.V, Yu Bychenkov, V., Detering, F., Rozmus, W., Sydera, R., Copjack, C.E, and Novikov, V.N.. Heat transport and electron distribution function in laser produced with hot spots. Physics of Plasmas 9 23022310., 2002.Google Scholar
[2]Bobylev, A.V and Potapenko, I.F. Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas. J. Comp. Phys., 246, 123144, 2013.Google Scholar
[3]Braginskii, S.I.. Reviews of plasmaphysics. Consultant Bureau, New York, vol. 1, 1965.Google Scholar
[4]Brantov, A.V, Yu Bychenkov, V., Batishchev, O.V., and Rozmus, W.. Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses. Computer Physics communications 164 6772, 2004.Google Scholar
[5]Brull, S., Degond, P., and Deluzet, F.. Degenerate anisotropic elliptic problems and magnetised plasma simulations. Commun. Comput. Phys. 11 pp147178, 2012.Google Scholar
[6]Brull, S., Degond, P., Deluzet, F., and Mouton, A.. An asymptotic preserving scheme for a bi-fluid Euler-Lorentz system, Kinet. Rel. Models. Vol. 4, No. 4, 2011.Google Scholar
[7]Brull, S., Deluzet, F., and Mouton, A.. Numerical resolution of an anisotropic non linear diffusion problem. Commun. in Math. Sci., vol 13, No 1, pp 203224, 2015.CrossRefGoogle Scholar
[8]Buet, C. and Cordier, S.. Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation. J. Comput. Phys. 145, No.1, 228245 (1998).Google Scholar
[9]Chen, F.. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York, 1984.Google Scholar
[10]Crispel, P., Degond, P., and Vignal, M.-H.. A plasma expansion model based on the full Euler-Poisson system. Math. Models Methods Appl. Sci. 17 11291158, 2007.Google Scholar
[11]Crispel, P., Degond, P., and Vignal, M.-H.. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field. Math. Models Methods Appl. Sci. 17 11291158, 2007.Google Scholar
[12]Crispel, P., Degond, P., and Vignal, M.-H.. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit. J. Comput. Phys. 223 (2007) 208234, 2007.Google Scholar
[13]Crouseilles, N., Lemou, M., and Méhats, F.. Asymptotic Preserving schemes for highly oscillatory Vlasov Poisson equations. J. Comp. Phys., Volume 248, Pages 287308, 1 September 2013.Google Scholar
[14]Degond, P., Deluzet, F., Navoret, L., Sun, A., and Vignal, M.H.. Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality. J. Comput. Phys, 229 no 16, 56305652, 2010.Google Scholar
[15]Degond, P., Deluzet, F., Sangam, A., and Vignal, M.-H.. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field. J. Comput. Phys. Volume 228, Issue 1, 2009.CrossRefGoogle Scholar
[16]Degond, P., Deluzet, F., and Savelief, D.. Numerical approximation of the Euler-Maxwell model in the quasineutral limit. Journal of Computational Physics, 231, pp. 19171946, 2012.Google Scholar
[17]Degond, P., Liu, H., Savelief, D., and Vignal, M-H.. Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit. C. R. Acad. Sci. Paris, Ser. I 341 323328, 2005.Google Scholar
[18]Degond, P., Lozinski, A., Narski, J., and Negulescu, C.. An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comp. Phys., 231 (2012), pp. 27242740.CrossRefGoogle Scholar
[19]Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S., and Rosenbluth, M.N.. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778, 1974.Google Scholar
[20]Dubroca, B., Feugeas, J.-L., and Frank, M.. Angular moment model for the Fokker-Planck equation. The European Phys. Journal D, Volume 60, Issue 2, pp 301307, November 2010.Google Scholar
[21]Dubroca, B. and Feugeas, J.L.. Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif. C. R. Acad. Sci. Paris, t. 329, SCrie I, p. 915920, 1999.Google Scholar
[22]Duclous, R., Dubroca, B., Filbet, F., and Tikhonchuk, V.. High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications. J. Comput. Phys. 228(14): 50725100 (2009).Google Scholar
[23]Filbet, F. and Jin, S.. A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. J. Comp. Phys. vol. 229, no 20 (2010).Google Scholar
[24]Hauck, C. and McLarren, R.. Positive PN closures. Siam J. Sci. Comp. Vol. 32, No. 5, pp. 26032626.Google Scholar
[25]Jin, S.. Efficient Asymptotic-Preserving (AP) schemes for some multi-scale kinetic equations. SIAM J. Sci. Comp. 21 441, 1999.Google Scholar
[26]Jin, S. and Yan, B.. A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation. J. Comp. Phys. 230, 64206437, 2011.CrossRefGoogle Scholar
[27]Lemou, M. and Mieussens, L.. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit. SIAM J. Sci. Comput., 31(1), 334368, 2008.Google Scholar
[28]Levermore, D.. Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1996.Google Scholar
[29]Mallet, J., Brull, S., and Dubroca, B.. An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons. Communi. Comput. Phys., Vol.15, No. 2, pp. 422450, 2013.Google Scholar
[30]Mallet, J., Brull, S., and Dubroca, B.. General moment system for plasma physics based on minimum entropy principle. Submitted.Google Scholar
[31]Marocchino, A., Tzoufras, M., Atzeni, S., Schiavi, A., Nicola, Ph. D., Mallet, J., Tikhonchuk, V., and Feugeas, J.-L.. Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses. Phys. Plasmas 20, 022702, 2013.Google Scholar
[32]Minerbo, G.N.. Maximum entropy Eddigton Factors. J. Quant. Spectrosc. Radiat. Transfer, 20, 541, 1978, 1978.Google Scholar
[33]Schurtz, G.P., Nicolai, Ph.D., and Busquet, M.. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Physics of Plasmas, 7, 4238, 2000.Google Scholar
[34]Spitzer, L. and Haarm, R.. Transport Phenomena in a Completely Ionized Gas. Phys. Rev. 89, 977, 1953.Google Scholar