Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:11:45.320Z Has data issue: false hasContentIssue false

SPEEDUP Code for Calculation of Transition Amplitudes via the Effective Action Approach

Published online by Cambridge University Press:  20 August 2015

Antun Balaž*
Affiliation:
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Ivana Vidanović*
Affiliation:
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Danica Stojiljković*
Affiliation:
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Dušan Vudragović*
Affiliation:
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Aleksandar Belić*
Affiliation:
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Aleksandar Bogojević*
Affiliation:
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Get access

Abstract

We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented to the maximal order p=18 in the time of propagation (Monte Carlo time step), which substantially improves the convergence of discretized amplitudes to their exact continuum values. Symbolic derivation of higher-order effective actions is implemented in SPEEDUP Mathematica codes, using the recursive Schrödinger equation approach. In addition to the general 1D quantum theory, developed Mathematica codes are capable of calculating effective actions for specific models, for general 2D and 3D potentials, as well as for a general many-body theory in arbitrary number of spatial dimensions.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Feynman, R. P., Rev. Mod. Phys. 20, 367 (1948).Google Scholar
[2]Feynman, R. P. and Hibbs, A. R., Quantum Mechanics and Path Integrals McGraw-Hill, New York, 1965).Google Scholar
[3]Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th ed. (World Scientific, Singapore, 2009).CrossRefGoogle Scholar
[4]Stojiljković, D., Bogojević, A., and Balaž, A., Phys. Lett. A 360, 205 (2006).CrossRefGoogle Scholar
[5]Bogojević, A., Vidanović, I., Balaž, A., and Belić, A., Phys. Lett. A 372, 3341 (2008).CrossRefGoogle Scholar
[6]Sethia, A., Sanyal, S., and Singh, Y., J. Chem. Phys. 93, 7268 (1990).Google Scholar
[7]Sethia, A., Sanyal, S., and Hirata, F., Chem. Phys. Lett. 315, 299 (1999).Google Scholar
[8]Vidanović, I., Bogojević, A., and Belić, A., Phys. Rev. E 80, 066705 (2009).Google Scholar
[9]Vidanović, I., Bogojević, A., Balaž, A., and Belić, A., Phys. Rev. E 80, 066706 (2009).CrossRefGoogle Scholar
[10]Balaž, A., Vidanović, I., Bogojević, A., and Pelster, A., Phys. Lett. A 374, 1539 (2010).CrossRefGoogle Scholar
[11]Feynman, R. P., Statistical Mechanics (W. A. Benjamin, New York, 1972).Google Scholar
[12]Parisi, G., Statistical Field Theory (Addison Wesley, New York, 1988).Google Scholar
[13]Bogojević, A., Balaž, A., and Belić, A., Phys. Rev. Lett. 94, 180403 (2005).CrossRefGoogle Scholar
[14]Bogojević, A., Balaž, A., and Belić, A., Phys. Rev. B 72, 064302 (2005).Google Scholar
[15]Bogojević, A., Balaž, A., and Belić, A., Phys. Lett. A 344, 84 (2005).CrossRefGoogle Scholar
[16]Bogojević, A., Balaž, A., and Belić, A., Phys. Rev. E 72, 036128 (2005).Google Scholar
[17]Balaž, A., Bogojević, A., Vidanović, I., and Pelster, A., Phys. Rev. E 79, 036701 (2009).Google Scholar
[18]Grujić, J., Bogojević, A., and Balaž, A., Phys. Lett. A 360, 217 (2006).Google Scholar
[19]SPEEDUP code distribution, http://www.scl.rs/speedup/Google Scholar
[20]Ceperley, D. M., Rev. Mod. Phys. 67, 279 (1995).Google Scholar
[21]Takahashi, M. and Imada, M., J. Phys. Soc. Jpn. 53, 3765 (1984).Google Scholar
[22]Li, X. P. and Broughton, J. Q., J. Chem. Phys. 86, 5094 (1987).CrossRefGoogle Scholar
[23]De, H. Raedt and De Raedt, B., Phys. Rev. A 28, 3575 (1983).Google Scholar
[24]Jang, S., Jang, S., and Voth, G., J. Chem. Phys. 115, 7832 (2001).Google Scholar
[25]Makri, N. and Miller, W. H., Chem. Phys. Lett. 151, 1 (1988);Google ScholarGoogle Scholar
[26]Makri, N., Chem. Phys. Lett. 193, 435 (1992).CrossRefGoogle Scholar
[27]Alford, M., Klassen, T. R., and Lepage, G. P., Phys. Rev. D 58, 034503 (1998).Google Scholar
[28]Chin, S. A. and Krotscheck, E., Phys. Rev. E 72, 036705 (2005).Google Scholar
[29]Hernández, E. R., Janecek, S., Kaczmarski, M., Krotscheck, E., Phys. Rev. B 75, 075108 (2007).CrossRefGoogle Scholar
[30]Ciftja, O. and Chin, S. A., Phys. Rev. B 68, 134510 (2003).CrossRefGoogle Scholar
[31]Sakkos, K., Casulleras, J., and Boronat, J., J. Chem. Phys. 130, 204109 (2009).CrossRefGoogle Scholar
[32]Janecek, S. and Krotscheck, E., Comput. Phys. Comm. 178, 835 (2008).Google Scholar
[33]Bandrauk, A. D. and Shen, H., J. Chem. Phys. 99, 1185 (1993).CrossRefGoogle Scholar
[34]Chin, S. A. and Chen, C. R., J. Chem. Phys. 117, 1409 (2002).Google Scholar
[35]Omelyan, I. P., Mryglod, I. M., and Folk, R., Comput. Phys. Commun. 151, 272 (2003).Google Scholar
[36]Goldstein, G. and Baye, D., Phys. Rev. E 70, 056703 (2004).CrossRefGoogle Scholar
[37]Chin, S. A., arXiv:0809.0914.Google Scholar
[38]Chin, S. A., Janecek, S., and Krotscheck, E., Comput. Phys. Comm. 180, 1700 (2009).Google Scholar
[39]Chin, S. A., Janecek, S., and Krotscheck, E., Chem. Phys. Lett. 470, 342 (2009).Google Scholar
[40]Mathematica software package, http://www.wolfram.com/mathematica/Google Scholar
[42]Scalable Parallel Random Number Generator library, http://sprng.fsu.edu/Google Scholar