Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T09:20:16.628Z Has data issue: false hasContentIssue false

Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation

Published online by Cambridge University Press:  03 June 2015

Henk A. Dijkstra*
Affiliation:
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, The Netherlands
Fred W. Wubs
Affiliation:
Department of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
Andrew K. Cliffe
Affiliation:
School of Mathematical Sciences, University of Nottingham, Nottingham, UK
Eusebius Doedel
Affiliation:
Department of Computer Science, Concordia University, Montreal, Canada
Ioana F. Dragomirescu
Affiliation:
National Centre for Engineering Systems of Complex Fluids, University Politehnica of Timisoara, Romania
Bruno Eckhardt
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, Marburg, Germany
Alexander Yu. Gelfgat
Affiliation:
School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
Andrew L. Hazel
Affiliation:
School of Mathematics, University of Manchester, Manchester, UK
Valerio Lucarini
Affiliation:
Meteorological Institute, Klimacampus, University of Hamburg, Hamburg, Germany Department of Mathematics and Statistics, University of Reading, Reading, UK
Andy G. Salinger
Affiliation:
Sandia National Laboratories, Albuquerque, USA
Erik T. Phipps
Affiliation:
Sandia National Laboratories, Albuquerque, USA
Juan Sanchez-Umbria
Affiliation:
Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Barcelona, Spain
Henk Schuttelaars
Affiliation:
Department of Applied Mathematical Analysis, TU Delft, Delft, the Netherlands
Laurette S. Tuckerman
Affiliation:
PMMH-ESPCI, Paris, France
Uwe Thiele
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough, UK
*
*Corresponding author.Email:[email protected]
Get access

Abstract

We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as ‘tipping points’, is important for understanding the transition mechanisms. We describe the two basic classes of methods of numerical bifurcation analysis, which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system. The numerical challenges involved in both methods arementioned and possible solutions to current bottlenecks are given. To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems, we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.

Type
Review Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Assemat, P., Bergeon, A., and Knobloch, E., 2008: Spatially localized states in Marangoni convection in binary mixtures. Fluid Dyn. Res., 40, 852–876.CrossRefGoogle Scholar
[2] Barkley, D. and Henderson, R. D., 1996: Floquet stability analysis of the periodic wake of a circular cylinder. J. Fluid Mech., 322, 215–241.CrossRefGoogle Scholar
[3] Batiste, O., Knobloch, E., Alonso, A., and Mercader, I., 2006: Spatially localized binary fluid convection. J. Fluid Mech., 560, 149–158.CrossRefGoogle Scholar
[4] Beltrame, P., Haänggi, P., and Thiele, U., 2009: Depinning of three-dimensional drops from wettability defects. Europhys. Lett., 86, 24 006, doi:10.1209/0295-5075/86/24006.CrossRefGoogle Scholar
[5] Beltrame, P. Knobloch, E., Haänggi, P., and Thiele, U., 2011: Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates. Phys. Rev. E, 83, 016 305, doi:10.1103/PhysRevE.83.016305.Google Scholar
[6] Beltrame, P. and Thiele, U., 2010: Time integration and steady-state continuation method for lubrication equations. SIAM J. Appl. Dyn. Syst., 9, 484–518, doi:10.1137/080718619.Google Scholar
[7] Bernsen, E., Dijkstra, H. A., Thies, J., and Wubs, F. W., 2010: The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models. Journal of Computational Physics, 229 (21), 8167–8179.Google Scholar
[8] Bernsen, E., Dijkstra, H. A., and Wubs, F. W., 2008: A method to reduce the spin-up time of ocean models. Ocean Modelling, 20 (4), 380–392.CrossRefGoogle Scholar
[9] Bernsen, E., Dijkstra, H. A., and Wubs, F. W., 2009: Bifurcation analysis of wind-driven flows with MOM4. Ocean Modelling, 30 (2-3), 95–105.CrossRefGoogle Scholar
[10] Bestehorn, M. and Neuffer, K., 2001: Surface patterns of laterally extended thin liquid films in three dimensions. Phys. Rev. Lett., 87, 046 101, doi:10.1103/PhysRevLett.87.046101.CrossRefGoogle ScholarPubMed
[11] Bestehorn, M., Pototsky, A., and Thiele, U., 2003: 3D large scale Marangoni convection in liquid films. Eur. Phys. J. B, 33, 457–467.CrossRefGoogle Scholar
[12] Bodenschatz, E., Pesch, W., and Ahlers, G., 2000: Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 32, 709–778.CrossRefGoogle Scholar
[13] Bohr, T., Jensen, M. H., Paladin, G., and Vulpiani, A., 1998: Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[14] Boronska, K. and Tuckerman, L., 2010: Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification. Phys. Rev., E81, 036321.Google ScholarPubMed
[15] Brown, P. N. and Saad, Y., 1990: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat.Comput., 11 (3), 450–481.Google Scholar
[16] Busse, F., 1981: Transition to turbulence in thermal convection. Topics in Applied Physics (eds. Swinney, H.L. and Gollub, J.P.), 45, 81–137.Google Scholar
[17] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 2006: Spectral Methods. Fundamentals in single domains. Springer.CrossRefGoogle Scholar
[18] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 2007: Spectral Methods. Evolution to complex geometries and applications to Fluid Dynamics. Springer.CrossRefGoogle Scholar
[19] Carey, G. F., Wang, K., and Joubert, W., 1989: Performance of iterative methods for Newtonian and generalized Newtonian flows. Int. J.Num. Meth. Fluids, 9, 127–150.Google Scholar
[20] Cassak, P. A., Drake, J. F., Shay, M. A., and Eckhardt, B., 2007: Onset of fast magnetic reconnection. Physical Review Letters, 98, 215 001 (4 pages).CrossRefGoogle ScholarPubMed
[21] Catton, I., 1972: The effect of insulating vertical walls on the onset of motion in a fluid heated from below. Int. J. Heat Mass Transfer, 15, 665–672.CrossRefGoogle Scholar
[22] Chandrasekhar, S., 1981: Hydrodynamic and Hydromagnetic Stability. N.Y. Google Scholar
[23] Chang, H.C., 1994: Wave evolution on a falling film. Ann. Rev. Fluid Mech., 26, 103–136.CrossRefGoogle Scholar
[24] Chang, H. C., Demekhin, E. A., and Kopelevich, D. I., 1993: Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech., 250, 433–480.CrossRefGoogle Scholar
[25] Cherubini, S., De Palma, P., Robinet, J. C., and Bottaro, A., 2011: Edge states in a boundary layer. Physics Of Fluids, 23 (5), 051 705.CrossRefGoogle Scholar
[26] Clever, R. M. and Busse, F. H., 1997: Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech., 344, 137–153.CrossRefGoogle Scholar
[27] Coleman, T. F., Garbow, B. S., and Moreé, J. J., 1984: Software for Estimating Sparse Jacobian Matrices. ACM Transactions on Mathematical Software, 10 (3), 329–345.Google Scholar
[28] De Niet, A. C., Wubs, F. W., Terwisscha van Scheltinga, A. D., and Dijkstra, H. A., 2007: A tailored solver for bifurcation studies of ocean-climate models. J. Comp. Physics, 277, 654–679.Google Scholar
[29] Dhooge, A., Govaerts, W. J. F., and Kuznetsov, Y. A., 2003: MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Soft., 29, 141–164.CrossRefGoogle Scholar
[30] Dijkstra, H. A., 2005: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Ninño, 2nd Revised and Enlarged edition. Springer, New York, 532 pp.Google Scholar
[31] Dijkstra, H. A. and Katsman, C. A., 1997: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophys. Astro-phys. Fluid Dyn., 85, 195–232.Google Scholar
[32] Dijkstra, H. A. and Weijer, W., 2003: Stability of the global ocean circulation: The connection of equilibria in a hierarchy of models. J. Mar. Res., 61, 725–743.CrossRefGoogle Scholar
[33] Doedel, E., 1986: AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Pasadena, USA, Report Applied Mathematics, California Institute of Technology.Google Scholar
[34] Doedel, E. J., 1980: AUTO: A program for the automatic bifurcation analysisof autonomous systems. Proc. 10th Manitoba Conf. on Numerical Math. and Comp., Vol. 30, 265–274.Google Scholar
[35] Doedel, E. J., Keller, H. B., and Kerneévez, J. P., 1991): Numerical analysis and control of bifurcation problems, Part I : Bifurcation in finite dimensions. Int. J. Bifurcation and Chaos, 1 (3), 493–520.Google Scholar
[36] Dragomirescu, F. I., Bistrian, D. A., Muntean, S., and Susan-Resiga, R., 2009: The stability of the swirling flows with applications to hydraulic turbines, Proceedings of the 3rd IAHR WG on Cavitation and Dynamic Problems in Hydraulic Mach. and Systems, Brno ‐ Czech Rep., Oct., 1416, 2009, 1524.Google Scholar
[37] Duguet, Y., Pringle, C. C. T., and Kerswell, R. R., 2008a: Relative periodic orbits in transitional pipe flow. Phys. Fluids, 20 (11), 114102.CrossRefGoogle Scholar
[38] Duguet, Y., Schlatter, P., Henningson, D., and Eckhardt, B., 2012: Self‐sustained localized structures in a boundary layer‐flow. Phys. Rev. Lett., 108, 044501.Google Scholar
[39] Duguet, Y., Willis, A. P., and Kerswell, R. R., 2008b: Transition in pipe flow: the saddle structure on the boundary of turbulence. Journal Of Fluid Mechanics, 613, 255–274.CrossRefGoogle Scholar
[40] Eckhardt, B., Faisst, H., Schmiegel, A., and Schneider, T. M., 2008: Dynamical systems and the transition to turbulence in linearly stable shear flows. Philosophical Transactions Of The Royal Society A‐Mathematical Physical And Engineering Sciences, 366 (1868), 1297– 1315.CrossRefGoogle ScholarPubMed
[41] Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J., 2007: Turbulence transition in pipe flow. Annual Review Of Fluid Mechanics, Vol 43, 39, 447–468.Google Scholar
[42] Ehlers, J., 1988: The Morphodynamics of the Wadden Sea. Balkema, Rotterdam, 397 pp.Google Scholar
[43] Faisst, H. and Eckhardt, B., 2003: Traveling waves in pipe flow. Physical Review Letters, 91 (22), 224 502.Google Scholar
[44] Frank‐Kamenetskii, D. A., 1939: Calculation of thermal explosion limits. Acta. Phys.-Chim USSR, 10, 365.Google Scholar
[45] Gelfgat, A. Y., 1999: Different modes of Rayleigh-Bénard instability in two- and three dimensional rectangular enclosures. J. Comp. Physics, 156, 300–324.CrossRefGoogle Scholar
[46] Gershuni, G. Z. and Zhukhovitskii, E., 1976: Convective Stability of Incompressible Fluids. Keter, Jerusalem.Google Scholar
[47] Gibson, J. F., Halcrow, J., and Cvitanovic, P., 2009: Equilibrium and traveling-wave solutions of plane Couette flow. J. Fluid Mech., 638, 243–266.Google Scholar
[48] Gladwell, M., 2000: The Tipping Point. Little Brown.Google Scholar
[49] Golub, G. H. and Van Loan, C. F., 1983: Matrix Computations. The Johns Hopkins University Press, Baltimore, U.S.A.Google Scholar
[50] Golubitsky, M., Stewart, I., and Schaeffer, D. G., 1988: Singularities and Groups in Bifurcation Theory, Vol. II. Springer-Verlag, New York, U.S.A.CrossRefGoogle Scholar
[51] Grossmann, S., 2000: The onset of shear flow turbulence. Reviews Of Modern Physics, 72 (2), 603.CrossRefGoogle Scholar
[52] Grün, G. and Rumpf, M., 2001: Simulation of singularities and instabilities arising in thin film flow. Euro. Jnl of Applied Mathematics, 12, 293–320.Google Scholar
[53] Guckenheimer, J. and Holmes, P., 1990: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd edition. Springer-Verlag, Berlin/Heidelberg.Google Scholar
[54] Haines, P. E., Hewitt, R. E., and Hazel, A. L., 2011: The Jeffery-Hamel similarity solution and its relation to flow in a diverging channel. Journal of Fluid Mechanics, 687, 404–430.CrossRefGoogle Scholar
[55] Heil, M. and Hazel, A., 2006: oomph-lib– An Object-Oriented Multi-Physics Finite-Element Library. Fluid-Structure Interaction, Lecture Notes on Computational Science and Engineering, Editors: Schafer, M. und Bungartz, H.-J. CrossRefGoogle Scholar
[56] Hof, B., et al., 2004: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science, 305 (5690), 1594–1598.CrossRefGoogle ScholarPubMed
[57] Huepe, C., Tuckerman, L. S., Meétens, S., and Brachet, M. E., 2003: Stability and Decay Rates of Non-Isotropic Attractive Bose-Einstein Condensates. Phys. Rev.A, 68, 023609.Google Scholar
[58] Kalliadasis, S., Ruyer-Quil, C., Scheid, B., and Velarde, M. G., 2012: Falling Liquid Films, Applied Mathematical Sciences, Vol. 176. Springer Verlag.Google Scholar
[59] Keller, H. B., 1977: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, Rabinowitz, P. H., Ed., Academic Press, New York, U.S.A.Google Scholar
[60] Kerswell, R., Tutty, O., and Drazin, P., 2004: Steady nonlinear waves in diverging channel flow. Journal of Fluid Mechanics, 501, 231–250.Google Scholar
[61] Kevrekidis, I. G., Nicolaenko, B., and Scovel, J. C., 1990: Back in the saddle again - a computer-assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math., 50, 760–790.CrossRefGoogle Scholar
[62] Koschmieder, E. L., 1993: Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge, UK.Google Scholar
[63] Krauskopf, B. and Osinga, H., 2007: Computing invariant manifolds via the continuation of orbit segments. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, Krauskopf, O. H. B. and G.-V. J., Eds., Springer-Verlag, Understanding Complex Systems, 117–154.Google Scholar
[64] Krauskopf, B., Osinga, H. M., Doedel, E. J., Henderson, M. E., Guckenheimer, J., Dellnitz, M., and Junge, O., 2005: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurcation and Chaos, 15, 763–791.Google Scholar
[65] Kundu, P. J. and Cohen, I. M., 2002: Fluid Mechanics. Academic Press, New York.Google Scholar
[66] Kuznetsov, Y. A. and Levitin, V. V., 1996: CONTENT, a multiplatform continuation environment. Tech. rep., CWI, Amsterdam, The Netherlands.Google Scholar
[67] Landau, L. D. and Lifshitz, I. M., 1987: Fluid Mechanics. Butterworth – Heinemann, New York.Google Scholar
[68] Lappa, M., 2005: On the nature and structure of possible three-dimensional steady flows in closed and open paralellepipedic and cubical containers under different heating conditions and driving forces. Fluid Mechanics and Material Processing, 1, 1–19.Google Scholar
[69] Lappa, M., 2007: Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh-Bénard systems. C.R.Mecanique, 335, 253–260.Google Scholar
[70] Lappa, M., 2010: Thermal Convection: Patterns, Evolution and Stability. John Wiley & Sons.Google Scholar
[71] Levitus, S., 1994: World Ocean Atlas 1994, Volume 4: Temperature. NOAA/NESDIS E, US Department of Commerce, Washington DC, OC21, 1–117.Google Scholar
[72] Lust, K., Roose, D., Spence, A., and Champneys, A., 1998: An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions. SIAM J.Sci. Comput., 19 (4), 1188–1209.Google Scholar
[73] Mamun, C. K. and Tuckerman, L. S., 1995: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids, 7, 80–91.CrossRefGoogle Scholar
[74] Manneville, P., 2005: Rayleigh-Bénard convection, thirty years of experimental, theoretical, and modeling work. In: Damics of Spatio-Temporal Cellular Structures. Henri Bénard Centenary Review (eds. Mutabazi, I., Guyin, J.E., and Wesfreid, J.E.), Springer.CrossRefGoogle Scholar
[75] Meerbergen, K. and Roose, D., 1996: Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems. IMA J. Numer. Anal., 16, 297–346.Google Scholar
[76] Meerbergen, K., Spence, A., and Roose, D., 1994: Shift-invert and Cayley transforms for the detection of rightmost eigenvalues of nonsymmetric matrices. BIT, 34, 409–423.CrossRefGoogle Scholar
[77] Menter, F. R., Langtry, R., and Hansen, T., 2004: CFD simulation of turbomachinery flow-verification, validation and modelling”, European Congress on Computational Methods in Applied Sciences and Engineering, Jyvskyl, Vol. 1. 114 pp.Google Scholar
[78] Merzhanov, A. G. and Shtessel, E. A., 1973: Free convection and thermal explosion in reactive systems. Acta Astronautica, 18, 191.Google Scholar
[79] Molemaker, M. J. and Dijkstra, H. A., 2000: Multiple equilibria and stability of the North-Atlantic wind-driven ocean circulation. Numerical methods for bifurcation problems and large-scale dynamical systems, Doedel, E. and Tuckerman, L. S., Eds., Springer, The IMA volumes in Mathematics and its applications, Vol. 119, 35–65.Google Scholar
[80] Nagata, M., 1997: Three-dimensional traveling-wave solutions in plane Couette flow. Physical Review E, 55 (2), 2023–2025.Google Scholar
[81] Net, M., Alonso, A., and Sánchez, J., 2003: From stationary to complex time-dependent flows in two-dimensional annular thermal convection at moderate Rayleigh numbers. Phys. Fluids, 15 (5), 1314–1326.Google Scholar
[82] Net, M., Garcia, F., and Sánchez, J., 2008: On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions. J. Fluid Mech., 601, 317–337.Google Scholar
[83] Olendraru, C. and Sellier, A., 2002: Absolute-convective instabilities of the Batchelor vortex in the viscous case. J. Fluid Mech., 459, 371–396.CrossRefGoogle Scholar
[84] Oron, A., 2000a: Nonlinear dynamics of three-dimensional long-wave Marangoni instability in thin liquid films. Phys. Fluids, 12, 1633–1645.Google Scholar
[85] Oron, A., 2000b: Three-dimensional nonlinear dynamics of thin liquid films. Phys. Rev. Lett., 85, 2108–2111, doi:10.1103/PhysRevLett.85.2108.CrossRefGoogle ScholarPubMed
[86] Oron, A., Davis, S. H., and Bankoff, S. G., 1997: Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69, 931–980, doi:10.1103/RevModPhys.69.931.Google Scholar
[87] Pawlowski, R. P., Shadid, J. N., Simonis, J. P., and Walker, H. F., 2006: Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations. SIAM Rev., 48, 700–721.Google Scholar
[88] Puigjaner, D., Herrero, J., Giralt, F., and Simó, C., 2004: Stability analysis of the flow in a cubical cavity heated from below. Phys. Fluids., 16, 3639–3655.Google Scholar
[89] Puigjaner, D., Herrero, J.,Simoó, C., and Giralt, F., 2011: From steady solutions tochaotic flows in a Rayleigh-Bénard problem at moderate Rayleigh numbers. Physica D., 240, 920–934.CrossRefGoogle Scholar
[90] Quon, C. and Ghil, M., 1992: Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech., 245, 449–484.Google Scholar
[91] Quon, C. and Ghil, M., 1995: Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio. J. Fluid Mech., 291, 33–56.CrossRefGoogle Scholar
[92] Saad, Y., 1980: Variations on Arnoldi’s method for computing eigenelements of large un-symmetric matrices. Lin. Alg. & Appl., 34, 269–295.Google Scholar
[93] Saad, Y., 1992: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 29 (1), 209–228.Google Scholar
[94] Saad, Y., 1996: Iterative Methods for Sparse Linear Systems. PWS.Google Scholar
[95] Sánchez, J., Marqueés, F., and Loópez, J. M., 2002: A continuation and bifurcation technique for Navier-Stokes flows. J.Comput. Phys., 180, 78–98.Google Scholar
[96] Sánchez, J. and Net, M., 2010: On the multiple shooting continuation of periodic orbits by Newton-Krylov methods. Int. J.Bifurcation and Chaos, 20 (1), 1–19.Google Scholar
[97] Sánchez, J. and Net, M., 2013: A parallel algorithm for the computation of invariant tori in large-scale dissipative systems. Physica D, 252, 22–33.Google Scholar
[98] Sánchez, J., Net, M., García-Archilla, B., and Simoó, C., 2004: Newton-Krylov continuation of periodic orbits for Navier-Stokes flows. J.Comput. Phys., 201 (1), 13–33.Google Scholar
[99] Sánchez, J., Net, M., and Simoó, C., 2010: Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems. Physica D, 239, 123–133.Google Scholar
[100] Sánchez, J., Net, M., and Vega, J., 2006: Amplitude equations close to a triple-(+1) bifurcation point of D 4-symmetric periodic orbits in O(2)-equivariant systems. Discrete and Continuous Dynamical Systems-Series B, 6 (6), 1357–1380.Google Scholar
[101] Scheid, B., Oron, A., Colinet, P., Thiele, U., and Legros, J. C., 2002: Nonlinear evolution of nonuniformly heated falling liquid films. Phys. Fluids, 14, 4130–4151.Google Scholar
[102] Scheid, B., Ruyer-Quil, C., and Manneville, P., 2006: Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech., 562, 183–222, doi:10.1017/S0022112006000978.Google Scholar
[103] Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O. A., Legros, J. C., and Colinet, P., 2005: Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech., 527, 303–335, doi:10.1017/S0022112004003179.Google Scholar
[104] Schneider, T. M. and Eckhardt, B., 2009: Edge states intermediate between laminar and turbulent dynamics in pipe flow. Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 367 (1888), 577–587.Google Scholar
[105] Schneider, T. M., Eckhardt, B., and Vollmer, J., 2007a: Statistical analysis of coherent structures in transitional pipe flow. Physical Review E, 75 (6), 066313.Google Scholar
[106] Schneider, T. M., Eckhardt, B., and Yorke, J. A., 2007b: Turbulence transition and the edge of chaos in pipe flow. Physical Review Letters, 99 (3), 034502.Google Scholar
[107] Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F., and Eckhardt, B., 2008: Laminarturbulent boundary in plane Couette flow. Physical Review E, 78 (3), 037 301.CrossRefGoogle ScholarPubMed
[108] Schuttelaars, H. and De Swart, H., 1996: An idealized long–term morphodynamic model of a tidal embayment. Eur. J. Mech., B/Fluids, 15 (1), 55–80.Google Scholar
[109] Seydel, R., 1994: Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos. Springer-Verlag, New York, U.S.A.Google Scholar
[110] Sharma, A. and Khanna, R., 1998: Pattern formation in unstable thin liquid films. Phys. Rev. Lett., 81, 3463–3466, doi:10.1103/PhysRevLett.81.3463.Google Scholar
[111] Shroff, G. M. and Keller, H. B., 1993: Stabilization of unstable procedures: the recursive projection method. SIAM J.Numer. Anal., 30 (4), 1099–1120.Google Scholar
[112] Simó, C., 1990: Analytical and numerical computation of invariant manifolds. Modern methods in celestial mechanics, Benest, C. and Froeschlé, C., Eds., Editions Frontieres, 285– 330. Also at http://www.maia.ub.es/dsg/2004/.Google Scholar
[113] Simonnet, E., Ghil, M., and Dijkstra, H. A., 2005: Homoclinic bifurcations of barotropic QG double-gyre circulation. J. Mar. Res., 63, 931–956.Google Scholar
[114] Simonnet, E., Ghil, M., Ide, K., Temam, R., and Wang, S., 2003: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solutions. J. Phys. Oceanogr., 33, 712–728.Google Scholar
[115] Skufca, J., Yorke, J. A., and Eckhardt, B., 2006: The edge of chaos in a model for a parallel shear flow. Phys. Rev. Lett., 96, 174101.CrossRefGoogle Scholar
[116] Sleijpen, G. and van der Vorst, H., 1996: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17, 401–425.Google Scholar
[117] Sleijpen, G., van der Vorst, H., and Wubs, F., 1999: Preconditioning for eigenproblems. Recent Advances in Numerical Methods and Applications II, Proceedings of the fourth International Conference, NMA ‘98, Sofia Bulgaria, 1923 August 1998, Iliev, O., Kasciev, M., Margenov, S., Sendov, B., and Vassilevski, F., Eds., World Scientific, 170–177.Google Scholar
[118] Sobey, I. and Drazin, P., 1986: Bifurcations of two-dimensional channel flows. Journal of Fluid Mechanics, 171, 263–287.Google Scholar
[119] Susan-Resiga, R., Ciocan, G., Muntean, S., Anton, I., and Avellan, F., 2006: Numerical simulation and analysis of swirling flow in the draft tube cone of a Francis turbine: 23 rd IAHR Symposium-Yokohama., Vol. 15. 1–15 pp.Google Scholar
[120] ter Brake, M., 2011: Tidal embayments: modelling and understanding their morphody-namics. Ph.D. thesis, Delft University of Technology.Google Scholar
[121] ter Brake, M. and Schuttelaars, H., 2010: Modeling equilibrium bed profiles of short tidal embayments. on the effect of the vertical distribution of suspended sediment and the influence of the boundary conditions. Ocean Dynamics, 60, 183–204.Google Scholar
[122] Thiele, U., 2010: Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys.: Condens. Matter, 22, 084 019, doi:10.1088/0953-8984/22/8/084019.Google Scholar
[123] Thiele, U. and Knobloch, E., 2004: Thin liquid films on a slightly inclined heated plate. Physica D, 190, 213–248.CrossRefGoogle Scholar
[124] Thiele, U. and Knobloch, E., 2006: Driven drops on heterogeneous substrates: Onset of sliding motion. Phys. Rev. Lett., 97, 204 501, doi:10.1103/PhysRevLett.97.204501.Google Scholar
[125] Thiele, U., Velarde, M. G., Neuffer, K., Bestehorn, M., and Pomeau, Y., 2001: Sliding drops in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E, 64, 061601, doi: 10.1103/PhysRevE.64.061601.Google Scholar
[126] Thies, J. Wubs, F., and Dijkstra, H. A., 2009: Bifurcation analysis of 3D ocean flows using a parallel fully-implicit ocean model. Ocean Modelling, 30 (4), 287–297.Google Scholar
[127] Thual, O. and McWilliams, J. C., 1992: The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64, 67–95.Google Scholar
[128] Tiesinga, G., Wubs, F., and Veldman, A., 2002: Bifurcation analysis of incompressible flow in a driven cavity by the Newton-Picard method. J. Comput. Appl. Math., 140 (1–2), 751–772.Google Scholar
[129] Toh, S. and Itano, T., 2003: A periodic-like solution in channel flow. J. Fluid Mech., 481, 67–76.Google Scholar
[130] Trefethen, L. and Bau, D., 1997: Numerical Linear Algebra. SIAM, Philadelphia.CrossRefGoogle Scholar
[131] Trenberth, K. E., Olson, J. G., and Large, W. G., 1989: A global ocean wind stress climatology based on ECMWF analyses. Tech. rep., National Center for Atmospheric Research, Boulder, CO, U.S.A.Google Scholar
[132] Tseluiko, D., Baxter, J., and Thiele, U., 2013: A homotopy continuation approach for analysing finite-time singularities in thin liquid films. IMA J. Appl. Math., doi: 10.1093/imamat/hxt021, (online).CrossRefGoogle Scholar
[133] Tuckerman, L. and Barkley, D., 1988: Global bifurcation to travelling wavesin axisymmetric convection. Phys. Rev. Lett., 61, 408–411.Google Scholar
[134] Tuckerman, L. S. and Barkley, D., 2000: Bifurcation analysis for timesteppers. Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Doedel, E. and Tuckerman, L. S., Eds., Springer–Verlag, IMA Volumes in Mathematics and its Applications, Vol. 119, 453–466.Google Scholar
[135] van Veen, L., Kawahara, G., and Atsushi, M., 2011: On Matrix-Free Computation of 2D Unstable Manifolds. SIAM Journal on Scientific Computing, 33 (1), 25–44.Google Scholar
[136] Viswanath, D., 2007: Recurrent motions within plane Couette turbulence. Journal Of Fluid Mechanics, 580, 339–358.Google Scholar
[137] Viswanath, D., 2009: The critical layer in pipe flow at high Reynolds number. Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 367 (1888), 561–576.Google Scholar
[138] Waleffe, F., 2003: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15, 1517–1534.CrossRefGoogle Scholar
[139] Walker, H. F., 1999: Anadaptationof Krylov subspace methods topath following problems. SIAM J. Sci. Comput., 21, 1191–1198.Google Scholar
[140] Wedin, H. and Kerswell, R. R., 2004: Exact coherent structures in pipe flow: travelling wave solutions. J.Fluid Mech., 508, 333–371.Google Scholar
[141] Wheeler, P. and Barkley, D., 2006: Computation of spiral spectra. SIAM J. Appl. Dyn. Syst., 5, 157–177.CrossRefGoogle Scholar