Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T07:26:17.799Z Has data issue: false hasContentIssue false

DelEnsembleElec: Computing Ensemble-Averaged Electrostatics Using DelPhi

Published online by Cambridge University Press:  03 June 2015

Lane W. Votapka
Affiliation:
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
Luke Czapla
Affiliation:
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
Maxim Zhenirovskyy
Affiliation:
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
Rommie E. Amaro*
Affiliation:
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
*
*Corresponding author.Email:[email protected]
Get access

Abstract

A new VMD plugin that interfaces with DelPhi to provide ensemble-averaged electrostatic calculations using the Poisson-Boltzmann equation is presented. The general theory and context of this approach are discussed, and examples of the plugin interface and calculations are presented. This new tool is applied to systems of current biological interest, obtaining the ensemble-averaged electrostatic properties of the two major influenza virus glycoproteins, hemagglutinin and neuraminidase, from explicitly solvated all-atom molecular dynamics trajectories. The differences between the ensemble-averaged electrostatics and those obtained from a single structure are examined in detail for these examples, revealing how the plugin can be a powerful tool in facilitating the modeling of electrostatic interactions in biological systems.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Honig, B & Nicholls, AClassical electrostatics in biology and chemistry. Science 268, 11441149 (1995).Google Scholar
[2]York, D. M., Darden, T. A. & Pedersen, L. G.The effect of long-range electrostatic interactions in simulations of macromolecular crystals – a comparison of the Ewald and truncated list methods. J Chem Phys 99, 83458348 (1993).Google Scholar
[3]Greengard, L & Rokhlin, V.A fast algorithm for particle simulations. J Comput Phys 73, 325348 (1987).Google Scholar
[4]Fogolari, F., Brigo, A & Molinari, HThe Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15, 377392, doi:10.1002/jmr.577 (2002).Google Scholar
[5]Harris, R. C., Bredenberg, J. H., Silalahi, A. R. J., Boschitsch, A. H. & Fenley, M. O.Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes. Biophys Chem 156, 7987, doi:10.1016/j.bpc.2011.02.010 (2011).Google Scholar
[6]Rocchia, Wet al. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23, 128137, doi:10.1002/jcc.1161 (2002).Google Scholar
[7]Case, D. A.et al. The Amber biomolecular simulation programs. J Comput Chem 26, 1668-1688, doi:10.1002/jcc.20290 (2005).Google Scholar
[8]Brooks, B. R.et al. Charmm – a Program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4, 187217 (1983).Google Scholar
[9]Suydam, I. T. S. C. D.Pande, V. S.Boxer, S. G.Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313, 200204 (2006).Google Scholar
[10]Aksimentiev, A & Schulten, KImaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88, 37453761, doi:10.1529/biophysj.104.058727 (2005).Google Scholar
[11]Humphrey, W., Dalke, A & Schulten, KVMD: visual molecular dynamics. J Mol Graph 14, 3338, 27-38 (1996).CrossRefGoogle ScholarPubMed
[12]Rocchia, W., Alexov, E & Honig, BExtending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. J Phys Chem B 105, 65076514 (2001).Google Scholar
[13]Newhouse, E. I.Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective. J Am Chem Soc 131, 1743017442 (2009).Google Scholar
[14]Xu, Det al. Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J Mol Biol 387, 465491, doi:10.1016/j.jmb.2009.01.040 (2009).Google Scholar
[15]Amaro, R. E., Cheng, X., Ivanov, I., Xu, D & McCammon, J. A.Characterizing loop dynamics and ligand recognition in human-and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. J Am Chem Soc 131, 47024709, doi:10.1021/ja8085643 (2009).Google Scholar
[16]Lawrenz, Met al. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Proteins 78, 25232532, doi:10.1002/prot.22761 (2010).Google Scholar
[17]Sung, J. C., Van Wynsberghe, A. W., Amaro, R. E., Li, W. W. & McCammon, J. A.Role of secondary sialic acid binding sites in influenza N1 neuraminidase. J Am Chem Soc 132, 28832885, doi:10.1021/ja9073672 (2010).Google Scholar
[18]Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A.PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32, W665667, doi:10.1093/nar/gkh381 (2004).Google Scholar
[19]Li, H., Robertson, A. D. & Jensen, J. H.Very fast empirical prediction and rationalization of protein pKa values. Proteins 61, 704721, doi:10.1002/prot.20660 (2005).Google Scholar
[20]Newhouse, E. I.et al. Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective. J Am Chem Soc 131, 1743017442, doi:10.1021/ja904052q (2009).Google Scholar
[21]Phillips, J. C.et al. Scalable molecular dynamics with NAMD. J Comput Chem 26, 17811802, doi:Doi 10.1002/Jcc.20289 (2005).Google Scholar
[22]Hornak, Vet al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Structure Function and Bioinformatics 65, 712725, doi:Doi 10.1002/Prot.21123 (2006).Google Scholar
[23]Scott, E. F., Yuhong, Z., Richard, W. P., Bernard, R. B.Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103, 46134621 (1995).Google Scholar
[24]Darden, TParticle mesh Ewald: An N ? log(N) method for Ewald sums in large systems. J Chem Phys 98, 1008910092 (1993).Google Scholar
[25]Andersen, H. C.Rattle: A “velocity” version of the Shake algorithm for molecular dynamics calculations. J Comput Phys 52, 2434 (1983).CrossRefGoogle Scholar
[26]AmaroR. E. S., R. V. R. E. S., R. V.Votapka, L. V.; Li, W. W.Walker, R. C.Bush, R.Mechanism of 150-cavity formation in influenza neuraminidase. Nature Commun 2, 388, doi:10.1038/ncomms1390 (2011).Google Scholar
[27]Berendsen, H. J. C.Molecular Dynamics with coupling to an external bath. J Chem Phys 81, 3684 (1984).Google Scholar
[28]Baker, N. A.Poisson-Boltzmann methods for biomolecular electrostatics. Methods Enzymol 383, 94118, doi:10.1016/S0076-6879(04)83005-2 (2004).Google Scholar
[29]Baker, N. A. & McCammon, J. A.Structural Bioinformatics. 427440 (John Wiley & Sons, 2003).Google Scholar
[30]von Itzstein, M.The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6, 967974, doi:10.1038/nrd2400 (2007).Google Scholar