Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T01:21:45.610Z Has data issue: false hasContentIssue false

A Cluster Dynamics Model For Accumulation Of Helium In Tungsten Under Helium Ions And Neutron Irradiation

Published online by Cambridge University Press:  20 August 2015

Y. G. Li*
Affiliation:
Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
W. H. Zhou*
Affiliation:
Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
R. H. Ning*
Affiliation:
Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
L. F. Huang*
Affiliation:
Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
Z. Zeng*
Affiliation:
Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
X. Ju*
Affiliation:
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Get access

Abstract

A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiation with neutron, by involving different types of objects, adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth. The calculated results under different conditions are in good agreement with experiments much well. The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions (energies and fluences) and material conditions (system temperature and existent sinks), by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks (dislocation lines and grain boundaries). The model, coded as IRadMat, would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Goldston, R. J. and Rutherfold, P. H.Introduction to Plasma Phys., page 156, 1996.Google Scholar
[2]Loarte, A., Lipschultz, B., Kukushkin, A. S., and et al. Nucl. Fusion, 47:S203S263, 2007.CrossRefGoogle Scholar
[3]Tokitani, M., Yoshida, N., Miyamoto, M., and et al. J. Nucl. Mater., 386388:173-176, 2009.Google Scholar
[4]Hino, T., Yamauchi, Y., and Hirohata, Y.J. Nucl. Mater., 266269:538-541, 1999.Google Scholar
[5]Ono, K., Arakawa, K., Oohashi, M., and et al. J. Nucl. Mater., 283287:210-214, 2000.Google Scholar
[6]Iwakiri, H., Yasunaga, K., Morishita, K., and et al. J. Nucl. Mater., 283287:1134-1138, 2000.Google Scholar
[7]Tokunaga, K., Yoshikawa, O., Makise, K., and Yoshida, N.J. Nucl. Mater., 307311:130-134, 2002.Google Scholar
[8]Iwakiri, H., Morishita, K., and Yoshida, N.J. Nucl. Mater., 307311:135-138, 2002.Google Scholar
[9]Nagata, S., Tsuchiya, B., Sugawara, T., and et al. J. Nucl. Mater., 307311:1513-1516, 2002.Google Scholar
[10]Tokunaga, K., Doerner, R. P., Seraydarian, R., and et al. J. Nucl. Mater., 313316:92-96, 2003.Google Scholar
[11]Nishijima, D., Ye, M. Y., Ohno, N., and Takamura, S.J. Nucl. Mater., 313316:97-101, 2003.Google Scholar
[12]Tokunaga, K., Tamura, S., Yoshida, N., and et al. J. Nucl. Mater., 329333:757-760, 2004.Google Scholar
[13]Nishijima, D., Ye, M. Y., Ohno, N., and Takamura, S.J. Nucl. Mater., 329333:1029-1033, 2004.Google Scholar
[14]Nishijima, D., Sugimoto, T., Iwakiri, H., and et al. J. Nucl. Mater., 337339:927-931, 2005.Google Scholar
[15]Tokitani, M., Miyamoto, M., Koga, D., and et al. J. Nucl. Mater., 337339:937-941, 2005.Google Scholar
[16]Yoshida, N., Iwakiri, H., Tokunaga, K., and Baba, T.J. Nucl. Mater., 337339:946-950, 2005.Google Scholar
[17]Gilliam, S. B., Gidcumb, S. M., Forsythe, D., and et al. Nucl. Instr. and Meth. in Phys. Res. B, 241:491495, 2005.Google Scholar
[18]Lee, H. T., Haasz, A.A., Davis, J. W., and Macaulay-Newcombe, R. G.J. Nucl. Mater., 360:196207, 2007.CrossRefGoogle Scholar
[19]Tokitani, M., Miyamoto, M., and Tokunaga, K.et al. J. Nucl. Mater., 363365:443-447, 2007.Google Scholar
[20]Lee, H. T., Haasz, A. A., Davis, J. W., and et al. J. Nucl. Mater., 363365:898-903, 2007.Google Scholar
[21]Kajita, S., Takamura, S., and Ohno, N. Nucl. Fusion, 47:13581366, 2007.Google Scholar
[22]Katayama, K., Imaoka, K., Okamura, T., and Nishikama, M.Fusion Eng. Des., 82:16451650, 2007.Google Scholar
[23]Enomoto, N., Muto, S., Tanabe, T., and et al. J. Nucl. Mater., 385:606614, 2009.Google Scholar
[24]Tokunaga, K., Fujiwara, T., Ezato, K., and et al. J. Nucl. Mater., 390391:916-920, 2009.Google Scholar
[25]Watanabe, Y., Iwakiri, H., Yoshida, N., and et al. Nucl. Instr. and Meth. in Phys. Res. B, 255:3236, 2007.Google Scholar
[26]Samaras, M. and Victoria, M.Materialtoday, 11:5462, 2008.Google Scholar
[27]Samaras, M., Victoria, M., and Hoffelner, W.Nucl. Eng. Tech., 41:110, 2009.CrossRefGoogle Scholar
[28]Xu, Q., Yoshida, N., and Yoshiie, T.J. Nucl. Mater., 367370:806-811, 2007.Google Scholar
[29]Becquart, C. S. and Domain, C.J. Nucl. Mater., 385:223227, 2009.Google Scholar
[30]Becquart, C. S., Domain, C., Sarkar, U., and et al. J. Nucl. Mater., 403:7588, 2010.CrossRefGoogle Scholar
[31]Barbu, A.C. R. Physique, 9:353361, 2008.Google Scholar
[32]Ortiz, C. J. and M. Caturla, J.Phys. Rev. B, 75:184101, 2007.Google Scholar
[33]Stoller, R. E., Golubov, S. I., Domain, C., and C. Becquart, S.J. Nucl. Mater., 382:7790, 2008.Google Scholar
[34]Xu, Q., Sato, K., and Yoshiie, T.J. Nucl. Mater., 390391:663-666, 2009.Google Scholar
[35]Pollak, E. and Talkner, P.Chaos, 15:026116, 2005.Google Scholar
[36]Ghoniem, N. M.Rad. Eff. Def. Sol., 148:269318, 1999.Google Scholar
[37]Ortiz, C. J., Caturla, M. J., Fu, C. C., and Willaime, F.Phys. ReV. B, 80:134109, 2009.Google Scholar
[38]Baskes, M. I. and Wilson, W. D.Phys. ReV. B, 27:22102217, 1983.CrossRefGoogle Scholar
[39]Wehner, M. F. and Wolfer, W. G.Philos. Mag. A, 52:189205, 1985.Google Scholar
[40]Christien, F. and Barbu, A.J. Nucl. Mater., 324:9096, 2004.Google Scholar
[41]Golubov, S. I., Stoller, R. E., Zinkle, S. J., and Ovcharenko, A. M.J. Nucl. Mater., 361:149159, 2007.Google Scholar
[42]Surh, M. P., Sturgeon, J. B., and Wolfer, W. G.J. Nucl. Mater., 378:8697, 2008.Google Scholar
[43]Ghoniem, N. M. and Sharafat, S.J. Nucl. Mater., 92:121135, 1980.Google Scholar
[44]Surh, M. P., Sturgeon, J. B., and Wolfer, W. G.J. Nucl. Mater., 325:4452, 2004.Google Scholar
[45]Pokor, C., brechet, Y., Dubuisson, P., and et al. J. Nucl. Mater., 326:1929, 2004.Google Scholar
[46]Meslin, E., Barbu, A., Boulanger, L., and et al. J. Nucl. Mater., 382:190196, 2008.Google Scholar
[47]Christien, F. and Barbu, A.J. Nucl. Mater., 393:153161, 2009.CrossRefGoogle Scholar
[48]Hardouin, A. Duparc, Moingeon, C., de Grande, N. Smetniansky, and Barbu, A.J. Nucl. Mater., 302:143155, 2002.Google Scholar
[49]Christien, F. and Barbu, A.J. Nucl. Mater., 346:272281, 2005.Google Scholar
[50]Gokhman, A. and Bergner, F.Radiat. Eff. Defects Solids, 165:216226, 2010.Google Scholar
[51]Ortiz, C. J., Caturla, M. J., Fu, C. C., and Willaime, F.Phys. Rev. B, 75:100102, 2007.Google Scholar
[52]Ortiz, C. J., Caturla, M. J., Fu, C. C., and Willaime, F.J. Nucl. Mater., 386388:33-35, 2009.Google Scholar
[53]Trinkaus, H. and Singh, B. N.J. Nucl. Mater., 323:229242, 2003.CrossRefGoogle Scholar
[54]Li, Y. G., Zhou, W. H., Feng, H. L., Zeng, Z., and Ju, X.Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten. Unpublished.Google Scholar
[55]Biersack, J. P. and L. Haggmark, G.Nucl. Instrum. Methods, 174:257269, 1980; TRIM/SRIM website, http://www.srim.org.Google Scholar
[56]Turkin, A. A. and Bakai, A. S.J. Nucl. Mater., 358:1025, 2006.Google Scholar
[57]Neta, B.Numerical Solution of Partial Differential Equations MA 3243 Lecture Notes. Unpublished, California, 2003.Google Scholar
[58]Petzold, L. R.Siam J. Sci. Stat. Comput., 4:136148, 1983.Google Scholar
[59]Federici, G., Brooks, J. N., Coster, D.P., and et al. J. Nucl. Mater., 290293:260-265, 2001.Google Scholar
[60]Fikar, J. and Schaublin, R.Nucl. Instr. Methods Phys. Res. B, 267:32183222, 2009.CrossRefGoogle Scholar
[61]Dieter, G. E.Mechanical Metallurgy. McGraw-Hill Book Company, London, si metric edition, 1988.Google Scholar
[62]Olsson, P. A. T.Compu. Mater. Sci., 47:135145, 2009.Google Scholar
[63]Carlsson, A. E.Solid State Phys., 43:191, 1990.CrossRefGoogle Scholar
[64]Derlet, P. M., Nguyen-Manh, D., and Dudarev, S. L.Phys. Rev. B, 76:054107, 2007.Google Scholar
[65]Becquart, C. S. and Domain, C.Nucl. Instr. Methods Phys. Res. B, 255:2326, 2007.Google Scholar
[66]Becquart, C. S. and Domain, C.Phys. Rev. Lett., 97:196402, 2006.CrossRefGoogle Scholar
[67]Ahlgren, T., Heinola, K., Juslin, N., and Kuronen, A.J. Appl. Phys., 107:033516, 2010.Google Scholar
[68]Ono, T., Kawamura, T., Kenmotsu, T., and Yamamura, Y.J. Nucl. Mater., 290293:140-143, 2001.Google Scholar
[69]Li, Y. G., Zhou, W. H., Feng, H. L., Hui, N. R., Zeng, Z., and Ju, X.Accumulation of he on w surface during kev-he irradiation: A cluster dynamics modeling. Unpublished.Google Scholar