Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T01:45:34.487Z Has data issue: false hasContentIssue false

Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation

Published online by Cambridge University Press:  20 August 2015

Q. Chen*
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
P. Monk*
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
X. Wang*
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
D. Weile*
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
*
Corresponding author.Email:[email protected]
Email address:[email protected]
Email address:[email protected]
Email address:[email protected]
Get access

Abstract

We show how to apply convolution quadrature (CQ) to approximate the time domain electric field integral equation (EFIE) for electromagnetic scattering. By a suitable choice of CQ, we prove that the method is unconditionally stable and has the optimal order of convergence. Surprisingly, the resulting semi discrete EFIE is dispersive and dissipative, and we analyze this phenomena. Finally, we present numerical results supporting and extending our convergence analysis.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abboud, T., Nedelec, J.C. and Volakis, J., Stable solution of the retarded potential equations, Proc. 17th Ann. Rev. Progress in Appl. Comp. Electromagnetics, Monterey, CA, March 2001, 146151.Google Scholar
[2]Balanis, C.A., Advanced Engineering Electromagnetics, Wiley, 1989.Google Scholar
[3]Bamberger, A. and HaDuong, T., Formulation variationnelle espace-temps pour le calcul par potentiel retarde de la diffraction d’une onde acoustique(i), Math. Mech. in the Appl. Sci, 8 (1986), 405435.Google Scholar
[4]Banjai, L., Multistep and multistage boundary integral methods for the wave equation, Preprint.Google Scholar
[5]Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.CrossRefGoogle Scholar
[6]Buffa, A., Costabel, M., Schwab, C., Boundary element methods for Maxwell’s equations on non-smooth domains, Numer. Math., 92(2002), 679710.Google Scholar
[7]Buffa, A., Constabel, M., Sheen, D., On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl., 276(2002), 845-867.Google Scholar
[8]Colton, D., Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Springer, Berlin, second ed., 1998.Google Scholar
[9]Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19(1988), 613-626.Google Scholar
[10]Hackbusch, W., Kress, W. and Sauter, S.A., Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering, Boundary Element Analysis, Lect. Notes Appl. Comput. Mech., 20(2007), 113-134.CrossRefGoogle Scholar
[11]Hackbusch, W., Kress, W. and Sauter, S.A., Sparse convolution quadrature for time domain boundary integral formulations of the waves equation, IMA J. Numer. Anal., 29(2009), 158-179.Google Scholar
[12]Hiptmair, R., Coupling of finite elements and boundary elemenets in electromagnetic scattering, SIAM J. Numer. Anal., 41(2003), 919-944.Google Scholar
[13]Hiptmair, R., Schwab, C., Natural boundary element methods for the electric field integral equation on polyhedra, SIAM J. Numer. Anal, 40(2002), 6686.CrossRefGoogle Scholar
[14]Kobidze, G., Gao, J., Shanker, B. and Michielssen, E., A fast time domain integral equation based scheme for analyzing scattering from dispersive objects, IEEE T. Antenn. Propag., 53(2005), 12151226.Google Scholar
[15]Kress, W and Sauter, S., Numerical treatment of retarded boundary integral equations by sparse panel clustering, Technical report 17-2006, Universitat Zurich. Available at http://www.math.unizh.ch/fileadmin/math/preprints/17-06.pdfGoogle Scholar
[16]Laliena, A.R. and Sayas, F.J., Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 112(2009), 637-678.Google Scholar
[17]Lu, M. and Michielssen, E., Closed form evaluation of time domain fields due to Rao-Wilton-Glisson sources for use in marching-on-in-time based EFIE solvers, IEEE Antenn. Propag. Society Int. Symp., 2002.Google Scholar
[18]Lubich, Ch., Convolution quadrature and discretized operational calculus I and II, Numer. Math, 52(1988), 129145, 413425.CrossRefGoogle Scholar
[19]Lubich, Ch., On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67(1994), 365389.CrossRefGoogle Scholar
[20]Lubich, Ch. and Ostermann, A., Runge-Kutta methods for parabolic equations and convolution quadrature, Math. Comput., 60(1993), 105-131.Google Scholar
[21]Shanker, B., Lu, M., Yuan, J. and Michielssen, E., Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields, IEEE T. Antenn. Propag., 57(2009), 15061519.CrossRefGoogle Scholar
[22]Terrasse, I., Resolution Mathematique et numerique de equations de Maxwell instationnaires par une methode de potentiels retardes, PhD thesis, Ecole Polytechnique, 1993.Google Scholar
[23]Wang, X. and Weile, D.S., Electromagnetic scattering from dispersive dielectric scatterers using the finite difference delay modeling method, IEEE T. Antenn. Propag., 58(2010), 17201730.CrossRefGoogle Scholar
[24]Wang, X., Wildman, R.A., Weile, D.S. and Monk, P., A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics, IEEE T. Antenn. Propag., 56(2008), 24422452.CrossRefGoogle Scholar
[25]Wildman, R.A. and Weile, D.S., An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition, IEEE T. Antenn. Propag., 52(2004), 30053011.CrossRefGoogle Scholar
[26]Wloka, J., Partial Differential Equations, Cambridge, 1987.CrossRefGoogle Scholar