Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T20:33:48.515Z Has data issue: false hasContentIssue false

The Total External Branch Length of Beta-Coalescents

Published online by Cambridge University Press:  10 July 2014

IULIA DAHMER
Affiliation:
Institut für Mathematik, Goethe-Universität, 60054 Frankfurt am Main, Germany (e-mail: [email protected], [email protected], [email protected])
GÖTZ KERSTING
Affiliation:
Institut für Mathematik, Goethe-Universität, 60054 Frankfurt am Main, Germany (e-mail: [email protected], [email protected], [email protected])
ANTON WAKOLBINGER
Affiliation:
Institut für Mathematik, Goethe-Universität, 60054 Frankfurt am Main, Germany (e-mail: [email protected], [email protected], [email protected])

Abstract

For 1 < α < 2 we derive the asymptotic distribution of the total length of external branches of a Beta(2 − α, α)-coalescent as the number n of leaves becomes large. It turns out that the fluctuations of the external branch length follow those of τn2−α over the entire parameter regime, where τn denotes the random number of coalescences that bring the n lineages down to one. This is in contrast to the fluctuation behaviour of the total branch length, which exhibits a transition at $\alpha_0 = (1+\sqrt 5)/2$ ([18]).

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work partially supported by the DFG Priority Programme SPP 1590 ‘Probabilistic Structures in Evolution’.

References

[1]Berestycki, N. (2009) Recent progress in coalescent theory. Enasios Mathemáticos 16 1193.Google Scholar
[2]Berestycki, J., Berestycki, N. and Limic, V. (2012) Asymptotic sampling formulae for Lambda-coalescents. To appear in Ann. Inst. H. Poincaré arXiv:1201.6512Google Scholar
[3]Berestycki, J., Berestycki, N. and Schweinsberg, J. (2007) Beta-coalescents and continuous stable random trees. Ann. Probab. 35 18351887.Google Scholar
[4]Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008) Small time properties of Beta-coalescents. Ann. Inst. H. Poincaré 44 214238.Google Scholar
[5]Birkner, M. and Blath, J. (2008) Computing likelihoods for coalescents with multiple collisions in the infinitely-many-sites model. J. Math. Biology 57 435465.Google Scholar
[6]Birkner, M., Blath, J., Capaldo, M., Etheridge, A., Möhle, M., Schweinsberg, J. and Wakolbinger, A. (2005) Alpha-stable branching and Beta-coalescents. Electron. J. Probab. 10 303325.Google Scholar
[7]Bolthausen, E. and Sznitman, A.-S. (1998) On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247276.Google Scholar
[8]Boom, E. G., Boulding, J. D. G. and Beckenbach, A. T. (1994) Mitochondrial DNA variation in introduced populations of Pacific oyster, Crassostrea gigas, in British Columbia. Canad. J. Fish. Aquat. Sci. 51 16081614.Google Scholar
[9]Delmas, J.-F., Dhersin, J.-S. and Siri-Jégousse, A. (2008) Asymptotic results on the length of coalescent trees. Ann. Appl. Probab. 18 9971025.Google Scholar
[10]Dhersin, J.-S. and Yuan, L. (2012) Asympotic behavior of the total length of external branches for Beta-coalescents. arXiv:1202.5859Google Scholar
[11]Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2007) Asymptotic results about the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Proc. Appl. 117 14041421.Google Scholar
[12]Durrett, R. (2008) Probability Models for DNA Sequence Evolution, second edition, Springer.Google Scholar
[13]Eldon, B. and Wakeley, J. (2006) Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172 26212633.Google Scholar
[14]Gnedin, A. and Yakubovich, Y. (2007) On the number of collisions in Λ-coalescents. Electron. J. Probab. 12 15471567.Google Scholar
[15]Iksanov, A. and Möhle, M. (2007) A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Comm. Probab. 12 2835.CrossRefGoogle Scholar
[16]Iksanov, A. and Möhle, M. (2008) On the number of jumps of random walks with a barrier. Adv. Appl. Probab. 40 206228.Google Scholar
[17]Janson, S. and Kersting, G. (2011) On the total external length of the Kingman coalescent. Electron. J. Probab. 16 22032218.Google Scholar
[18]Kersting, G. (2012) The asymptotic distribution of the length of Beta-coalescent trees. Ann. Appl. Probab. 22 20862107.Google Scholar
[19]Kingman, J. F. C. (1982) The coalescent. Stoch. Proc. Appl. 13 235248.Google Scholar
[20]Möhle, M. (2010) Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson–Dirichlet coalescent. Stoch. Process. Appl. 120 21592173.Google Scholar
[21]Pitman, J. (1999) Coalescents with multiple collisions. Ann. Probab. 27 18701902.Google Scholar
[22]Sagitov, S. (1999) The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 11161125.Google Scholar
[23]Schweinsberg, J. (2000) A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Comm. Probab. 5 111.Google Scholar
[24]Steinrücken, M., Birkner, M. and Blath, J. (2013) Analysis of DNA sequence variation within marine species using Beta-coalescents. Theoret. Popul. Biol. 83 2029.Google Scholar
[25]Wakeley, J. (2008) Coalescent Theory: An Introduction, Roberts.Google Scholar
[26]Watterson, G. A. (1975) On the number of segregating sites in genetical models without recombination. Theoret. Popul. Biol. 7 256276.Google Scholar